Cargando…

Combined inhibition of ACLY and CDK4/6 reduces cancer cell growth and invasion

The use of small molecule kinase inhibitors, which target specific enzymes that are overactive in cancer cells, has revolutionized cancer patient treatment. To treat some types of breast cancer, CDK4/6 inhibitors, such as palbociclib, have been developed that target the phosphorylation of the retino...

Descripción completa

Detalles Bibliográficos
Autores principales: Velez, Brian Christopher, Petrella, Christopher Paul, DiSalvo, Kathleen Helen, Cheng, Keyi, Kravtsov, Rebecca, Krasniqi, Dorina, Krucher, Nancy Ann
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827262/
https://www.ncbi.nlm.nih.gov/pubmed/36562384
http://dx.doi.org/10.3892/or.2022.8469
Descripción
Sumario:The use of small molecule kinase inhibitors, which target specific enzymes that are overactive in cancer cells, has revolutionized cancer patient treatment. To treat some types of breast cancer, CDK4/6 inhibitors, such as palbociclib, have been developed that target the phosphorylation of the retinoblastoma tumor suppressor gene. Acquired resistance to CDK4/6 inhibitors may be due to activation of the AKT pro-survival signaling pathway that stimulates several processes, such as growth, metastasis and changes in metabolism that support rapid cell proliferation. The aim of the present study was to investigate whether targeting ATP citrate lyase (ACLY), a downstream target of AKT, may combine with CDK4/6 inhibition to inhibit tumorigenesis. The present study determined that ACLY is activated in breast and pancreatic cancer cells in response to palbociclib treatment and AKT mediates this effect. Inhibition of ACLY using bempedoic acid used in combination with palbociclib reduced cell viability in a panel of breast and pancreatic cancer cell lines. This effect was also observed using breast cancer cells grown in 3D cell culture. Mechanistically, palbociclib inhibited cell proliferation, whereas bempedoic acid stimulated apoptosis. Finally, using Transwell invasion assays and immunoblotting, the present study demonstrated that ACLY inhibition blocked cell invasion, when used alone or in combination with palbociclib. These data may yield useful information that could guide the development of future therapies aimed at the reduction of acquired resistance observed clinically.