Cargando…
Early Biomarker Signatures in Surgical Sepsis
INTRODUCTION: Sepsis has complex, time-sensitive pathophysiology and important phenotypic subgroups. The objective of this study was to use machine learning analyses of blood and urine biomarker profiles to elucidate the pathophysiologic signatures of subgroups of surgical sepsis patients. METHODS:...
Autores principales: | Madushani, R.W.M.A., Patel, Vishal, Loftus, Tyler, Ren, Yuanfang, Li, Han Jacob, Velez, Laura, Wu, Quran, Adhikari, Lasith, Efron, Philip, Segal, Mark, Ozrazgat-Baslanti, Tezcan, Rashidi, Parisa, Bihorac, Azra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827429/ https://www.ncbi.nlm.nih.gov/pubmed/35569215 http://dx.doi.org/10.1016/j.jss.2022.04.052 |
Ejemplares similares
-
DeepSOFA: A Continuous Acuity Score for Critically Ill Patients using Clinically Interpretable Deep Learning
por: Shickel, Benjamin, et al.
Publicado: (2019) -
EARLY DIFFERENTIATION BETWEEN SEPSIS AND STERILE INFLAMMATION VIA URINARY GENE SIGNATURES OF METABOLIC DYSREGULATION
por: Bandyopadhyay, Sabyasachi, et al.
Publicado: (2022) -
Discovery and Validation of Urinary Molecular Signature of Early Sepsis
por: Bandyopadhyay, Sabyasachi, et al.
Publicado: (2020) -
Methods for Phenotyping Adult Patients in Sepsis and Septic Shock: A Scoping Review
por: Li, Han, et al.
Publicado: (2022) -
Dynamic predictions of postoperative complications from explainable, uncertainty-aware, and multi-task deep neural networks
por: Shickel, Benjamin, et al.
Publicado: (2023)