Cargando…
Acceleration of knee magnetic resonance imaging using a combination of compressed sensing and commercially available deep learning reconstruction: a preliminary study
PURPOSE: To evaluate whether deep learning reconstruction (DLR) accelerates the acquisition of 1.5-T magnetic resonance imaging (MRI) knee data without image deterioration. MATERIALS AND METHODS: Twenty-one healthy volunteers underwent MRI of the right knee on a 1.5-T MRI scanner. Proton-density-wei...
Autores principales: | Akai, Hiroyuki, Yasaka, Koichiro, Sugawara, Haruto, Tajima, Taku, Kamitani, Masaru, Furuta, Toshihiro, Akahane, Masaaki, Yoshioka, Naoki, Ohtomo, Kuni, Abe, Osamu, Kiryu, Shigeru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827641/ https://www.ncbi.nlm.nih.gov/pubmed/36624404 http://dx.doi.org/10.1186/s12880-023-00962-2 |
Ejemplares similares
-
Commercially Available Deep-learning-reconstruction of MR Imaging of the Knee at 1.5T Has Higher Image Quality Than Conventionally-reconstructed Imaging at 3T: A Normal Volunteer Study
por: Akai, Hiroyuki, et al.
Publicado: (2022) -
Impact of deep learning reconstruction on intracranial 1.5 T magnetic resonance angiography
por: Yasaka, Koichiro, et al.
Publicado: (2021) -
Application of CT texture analysis to assess the localization of primary aldosteronism
por: Akai, Hiroyuki, et al.
Publicado: (2020) -
Computed tomography and magnetic resonance imaging of a plexiform angiomyxoid myofibroblastic tumor: a case report
por: Akai, Hiroyuki, et al.
Publicado: (2017) -
Precision of quantitative computed tomography texture analysis using image filtering: A phantom study for scanner variability
por: Yasaka, Koichiro, et al.
Publicado: (2017)