Cargando…
Neuroprotective effects of insulin-like growth factor-2 in 6-hydroxydopamine-induced cellular and mouse models of Parkinson’s disease
Skin-derived precursor Schwann cells have been reported to play a protective role in the central nervous system. The neuroprotective effects of skin-derived precursor Schwann cells may be attributable to the release of growth factors that nourish host cells. In this study, we first established a cel...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827768/ https://www.ncbi.nlm.nih.gov/pubmed/36254999 http://dx.doi.org/10.4103/1673-5374.355815 |
Sumario: | Skin-derived precursor Schwann cells have been reported to play a protective role in the central nervous system. The neuroprotective effects of skin-derived precursor Schwann cells may be attributable to the release of growth factors that nourish host cells. In this study, we first established a cellular model of Parkinson’s disease using 6-hydroxydopamine. When SH-SY5Y cells were pretreated with conditioned medium from skin-derived precursor Schwann cells, their activity was greatly increased. The addition of insulin-like growth factor-2 neutralizing antibody markedly attenuated the neuroprotective effects of skin-derived precursor Schwann cells. We also found that insulin-like growth factor-2 levels in the peripheral blood were greatly increased in patients with Parkinson’s disease and in a mouse model of Parkinson’s disease. Next, we pretreated cell models of Parkinson’s disease with insulin-like growth factor-2 and administered insulin-like growth factor-2 intranasally to a mouse model of Parkinson’s disease induced by 6-hydroxydopamine and found that the level of tyrosine hydroxylase, a marker of dopamine neurons, was markedly restored, α-synuclein aggregation decreased, and insulin-like growth factor-2 receptor down-regulation was alleviated. Finally, in vitro experiments showed that insulin-like growth factor-2 activated the phosphatidylinositol 3 kinase (PI3K)/AKT pathway. These findings suggest that the neuroprotective effects of skin-derived precursor Schwann cells on the central nervous system were achieved through insulin-like growth factor-2, and that insulin-like growth factor-2 may play a neuroprotective role through the insulin-like growth factor-2 receptor/PI3K/AKT pathway. Therefore, insulin-like growth factor-2 may be an useful target for Parkinson’s disease treatment. |
---|