Cargando…

PHD3 inhibits cell proliferation through hydroxylation of PAX2 at proline 9: PHD3 hydroxylates PAX2

The oncoprotein transcription factor paired box 2 (PAX2) is aberrantly expressed in cancers, but the underlying mechanism remains elusive. Prolyl hydroxylase 3 (PHD3) hydroxylates the proline residue of HIFα, mediating HIFα degradation. The von Hippel-Lindau protein (pVHL) is an E3 ligase which medi...

Descripción completa

Detalles Bibliográficos
Autores principales: Lun, Jie, Wang, Yuxin, Gao, Qiang, Wang, Yu, Zhang, Hongwei, Fang, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827955/
https://www.ncbi.nlm.nih.gov/pubmed/35920196
http://dx.doi.org/10.3724/abbs.2022043
_version_ 1784867160302026752
author Lun, Jie
Wang, Yuxin
Gao, Qiang
Wang, Yu
Zhang, Hongwei
Fang, Jing
author_facet Lun, Jie
Wang, Yuxin
Gao, Qiang
Wang, Yu
Zhang, Hongwei
Fang, Jing
author_sort Lun, Jie
collection PubMed
description The oncoprotein transcription factor paired box 2 (PAX2) is aberrantly expressed in cancers, but the underlying mechanism remains elusive. Prolyl hydroxylase 3 (PHD3) hydroxylates the proline residue of HIFα, mediating HIFα degradation. The von Hippel-Lindau protein (pVHL) is an E3 ligase which mediates ubiquitination and degradation of hydroxylated HIFα. PHD3 and pVHL are found to inhibit the expression of PAX2, however, the molecular mechanism is unclear. Here we demonstrate that PHD3 hydroxylates PAX2 at proline 9, which is required for pVHL to mediate PAX2 ubiquitination and degradation. Overexpression of PHD3 enhances prolyl hydroxylation, ubiquitination and degradation of PAX2 with little effect on those of PAX2(P9A). PHD3 does not influence PAX2 expression in VHL-null cells. pVHL binds to PAX2 and enhances PAX2 ubiquitination and degradation. However, pVHL does not bind with PAX2(P9A) and cannot enhance its ubiquitination and degradation. Our results suggest that proline 9 hydroxylation is a prerequisite for PAX2 degradation by pVHL. Functional studies indicate that introduction of PAX2 into PAX2-null COS-7 cells promotes cell proliferation, which is suppressed by co-expression of PHD3 but not by hydroxylase-deficient PHD3(H196A). PHD3 inhibits PAX2-induced, but not PAX2(P9A)-induced proliferation of COS-7 cells. These results suggest that PHD3 hydroxylates PAX2, followed by pVHL-mediated PAX2 ubiquitination and degradation. This study also suggests that PHD3 inhibits cell proliferation through downregulating PAX2.
format Online
Article
Text
id pubmed-9827955
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-98279552023-02-10 PHD3 inhibits cell proliferation through hydroxylation of PAX2 at proline 9: PHD3 hydroxylates PAX2 Lun, Jie Wang, Yuxin Gao, Qiang Wang, Yu Zhang, Hongwei Fang, Jing Acta Biochim Biophys Sin (Shanghai) Research Article The oncoprotein transcription factor paired box 2 (PAX2) is aberrantly expressed in cancers, but the underlying mechanism remains elusive. Prolyl hydroxylase 3 (PHD3) hydroxylates the proline residue of HIFα, mediating HIFα degradation. The von Hippel-Lindau protein (pVHL) is an E3 ligase which mediates ubiquitination and degradation of hydroxylated HIFα. PHD3 and pVHL are found to inhibit the expression of PAX2, however, the molecular mechanism is unclear. Here we demonstrate that PHD3 hydroxylates PAX2 at proline 9, which is required for pVHL to mediate PAX2 ubiquitination and degradation. Overexpression of PHD3 enhances prolyl hydroxylation, ubiquitination and degradation of PAX2 with little effect on those of PAX2(P9A). PHD3 does not influence PAX2 expression in VHL-null cells. pVHL binds to PAX2 and enhances PAX2 ubiquitination and degradation. However, pVHL does not bind with PAX2(P9A) and cannot enhance its ubiquitination and degradation. Our results suggest that proline 9 hydroxylation is a prerequisite for PAX2 degradation by pVHL. Functional studies indicate that introduction of PAX2 into PAX2-null COS-7 cells promotes cell proliferation, which is suppressed by co-expression of PHD3 but not by hydroxylase-deficient PHD3(H196A). PHD3 inhibits PAX2-induced, but not PAX2(P9A)-induced proliferation of COS-7 cells. These results suggest that PHD3 hydroxylates PAX2, followed by pVHL-mediated PAX2 ubiquitination and degradation. This study also suggests that PHD3 inhibits cell proliferation through downregulating PAX2. Oxford University Press 2022-04-27 /pmc/articles/PMC9827955/ /pubmed/35920196 http://dx.doi.org/10.3724/abbs.2022043 Text en © The Author(s) 2021. https://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Lun, Jie
Wang, Yuxin
Gao, Qiang
Wang, Yu
Zhang, Hongwei
Fang, Jing
PHD3 inhibits cell proliferation through hydroxylation of PAX2 at proline 9: PHD3 hydroxylates PAX2
title PHD3 inhibits cell proliferation through hydroxylation of PAX2 at proline 9: PHD3 hydroxylates PAX2
title_full PHD3 inhibits cell proliferation through hydroxylation of PAX2 at proline 9: PHD3 hydroxylates PAX2
title_fullStr PHD3 inhibits cell proliferation through hydroxylation of PAX2 at proline 9: PHD3 hydroxylates PAX2
title_full_unstemmed PHD3 inhibits cell proliferation through hydroxylation of PAX2 at proline 9: PHD3 hydroxylates PAX2
title_short PHD3 inhibits cell proliferation through hydroxylation of PAX2 at proline 9: PHD3 hydroxylates PAX2
title_sort phd3 inhibits cell proliferation through hydroxylation of pax2 at proline 9: phd3 hydroxylates pax2
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827955/
https://www.ncbi.nlm.nih.gov/pubmed/35920196
http://dx.doi.org/10.3724/abbs.2022043
work_keys_str_mv AT lunjie phd3inhibitscellproliferationthroughhydroxylationofpax2atproline9phd3hydroxylatespax2
AT wangyuxin phd3inhibitscellproliferationthroughhydroxylationofpax2atproline9phd3hydroxylatespax2
AT gaoqiang phd3inhibitscellproliferationthroughhydroxylationofpax2atproline9phd3hydroxylatespax2
AT wangyu phd3inhibitscellproliferationthroughhydroxylationofpax2atproline9phd3hydroxylatespax2
AT zhanghongwei phd3inhibitscellproliferationthroughhydroxylationofpax2atproline9phd3hydroxylatespax2
AT fangjing phd3inhibitscellproliferationthroughhydroxylationofpax2atproline9phd3hydroxylatespax2