Cargando…

MTERF3 contributes to MPP+-induced mitochondrial dysfunction in SH-SY5Y cells: MTERF3 in mitochondrial dysfunction

Parkinson’s disease (PD) is a neurodegenerative disorder causing severe social and economic burdens. The origin of PD has been usually attributed to mitochondrial dysfunction. To this end, mitochondrial transcription regulators become attractive subjects for understanding PD pathogenesis. Previously...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Shun, Xu, Nan, Han, Yanyan, Ye, Xiaofei, Yang, Ling, Zuo, Ji, Liu, Wen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9828133/
https://www.ncbi.nlm.nih.gov/pubmed/35904214
http://dx.doi.org/10.3724/abbs.2022098
Descripción
Sumario:Parkinson’s disease (PD) is a neurodegenerative disorder causing severe social and economic burdens. The origin of PD has been usually attributed to mitochondrial dysfunction. To this end, mitochondrial transcription regulators become attractive subjects for understanding PD pathogenesis. Previously, we found that the expression of mitochondrial transcription termination factor 3 (MTERF3) was reduced in MPP+-induced mice model of PD. In the present study, we probe the function of MTERF3 and its role in MPP+-induced cellular model of PD. Initially, we observe that MTERF3 expression is also reduced in MPP+-induced cellular model of PD, which can be mainly attributed to the increase of MTERF3 degradation. Next, we examine the effect of MTERF3 knockdown and overexpression on the replication, transcription, and translation of mitochondrial DNA (mtDNA). We show that knockdown and overexpression of MTERF3 have opposite effects on mtDNA transcript level but similar effects on mtDNA expression level, in line with MTERF3’s dual roles in mtDNA transcription and translation. In addition, we examine the effect of MTERF3 knockdown and overexpression on mitochondrial function with and without MPP+ treatment, and find that MTERF3 seems to play a generally protective role in MPP+-induced mitochondrial dysfunction. Together, this work suggests a regulatory role of MTERF3 in MPP+-induced cellular model of PD and may provide clues in designing novel therapeutics against PD.