Cargando…
DFinder: a novel end-to-end graph embedding-based method to identify drug–food interactions
MOTIVATION: Drug–food interactions (DFIs) occur when some constituents of food affect the bioaccessibility or efficacy of the drug by involving in drug pharmacodynamic and/or pharmacokinetic processes. Many computational methods have achieved remarkable results in link prediction tasks between biolo...
Autores principales: | Wang, Tao, Yang, Jinjin, Xiao, Yifu, Wang, Jingru, Wang, Yuxian, Zeng, Xi, Wang, Yongtian, Peng, Jiajie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9828147/ https://www.ncbi.nlm.nih.gov/pubmed/36579885 http://dx.doi.org/10.1093/bioinformatics/btac837 |
Ejemplares similares
-
Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data
por: Xu, Junlin, et al.
Publicado: (2023) -
An end-to-end heterogeneous graph attention network for Mycobacterium tuberculosis drug-resistance prediction
por: Yang, Yang, et al.
Publicado: (2021) -
Retrosynthesis prediction using an end-to-end graph generative architecture for molecular graph editing
por: Zhong, Weihe, et al.
Publicado: (2023) -
Remote sensing image description based on word embedding and end-to-end deep learning
por: Wang, Yuan, et al.
Publicado: (2021) -
An Effective Graph Clustering Method to Identify Cancer Driver Modules
por: Zhang, Wei, et al.
Publicado: (2020)