Cargando…

Ruthenium(II)/Imidazolidine Carboxylic Acid‐Catalyzed C−H Alkylation for Central and Axial Double Enantio‐Induction

Enantioselective C−H activation has surfaced as a transformative toolbox for the efficient assembly of chiral molecules. However, despite of major advances in rhodium and palladium catalysis, ruthenium(II)‐catalyzed enantioselective C−H activation has thus far largely proven elusive. In contrast, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yanjun, Liou, Yan‐Cheng, Oliveira, João C. A., Ackermann, Lutz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9828380/
https://www.ncbi.nlm.nih.gov/pubmed/36108175
http://dx.doi.org/10.1002/anie.202212595
Descripción
Sumario:Enantioselective C−H activation has surfaced as a transformative toolbox for the efficient assembly of chiral molecules. However, despite of major advances in rhodium and palladium catalysis, ruthenium(II)‐catalyzed enantioselective C−H activation has thus far largely proven elusive. In contrast, we herein report on a ruthenium(II)‐catalyzed highly regio‐, diastereo‐ and enantioselective C−H alkylation. The key to success was represented by the identification of novel C2‐symmetric chiral imidazolidine carboxylic acids (CICAs), which are easily accessible in a one‐pot fashion, as highly effective chiral ligands. This ruthenium/CICA system enabled the efficient installation of central and axial chirality, and featured excellent branched to linear ratios with generally >20 : 1 dr and up to 98 : 2 er. Mechanistic studies by experiment and computation were carried out to understand the catalyst mode of action.