Cargando…
The Vitruvian spider: Segmenting and integrating over different body parts to describe ecophenotypic variation
Understanding what drives the existing phenotypic variability has been a major topic of interest for biologists for generations. However, the study of the phenotype may not be straightforward. Indeed, organisms may be interpreted as composite objects, comprising different ecophenotypic traits, which...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9828460/ https://www.ncbi.nlm.nih.gov/pubmed/36169046 http://dx.doi.org/10.1002/jmor.21516 |
_version_ | 1784867278550990848 |
---|---|
author | Bellvert, Adrià Roca‐Cusachs, Marcos Tonzo, Vanina Arnedo, Miquel A. Kaliontzopoulou, Antigoni |
author_facet | Bellvert, Adrià Roca‐Cusachs, Marcos Tonzo, Vanina Arnedo, Miquel A. Kaliontzopoulou, Antigoni |
author_sort | Bellvert, Adrià |
collection | PubMed |
description | Understanding what drives the existing phenotypic variability has been a major topic of interest for biologists for generations. However, the study of the phenotype may not be straightforward. Indeed, organisms may be interpreted as composite objects, comprising different ecophenotypic traits, which are neither necessarily independent from each other nor do they respond to the same evolutionary pressures. For this reason, a deep biological understanding of the focal organism is essential for any morphological analysis. The spider genus Dysdera provides a particularly well‐suited system for setting up protocols for morphological analyses that encompass a suit of morphological structures in any nonmodel system. This genus has undergone a remarkable diversification in the Canary Islands, where different species perform different ecological roles, exhibiting different levels of trophic specialization or troglomorphic adaptations, which translate into a remarkable interspecific morphological variability. Here, we seek to develop a broad guide, of which morphological characters must be considered, to study the effect of different ecological pressures in spiders and propose a general workflow that will be useful whenever researchers set out to investigate variation in the body plans of different organisms, with data sets comprising a set of morphological traits. We use geometric morphometric methods to quantify variation in different body structures, all of them with diverse phenotypic modifications in their chelicera, prosoma, and legs. We explore the effect of analyzing different combined landmark (LM) configurations of these characters and the degree of morphological integration that they exhibit. Our results suggest that different LM configurations of each of these body parts exhibit a higher degree of integration compared to LM configurations from different structures and that the analysis of each of these body parts captures different aspects of morphological variation, potentially related to different ecological factors. |
format | Online Article Text |
id | pubmed-9828460 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-98284602023-01-10 The Vitruvian spider: Segmenting and integrating over different body parts to describe ecophenotypic variation Bellvert, Adrià Roca‐Cusachs, Marcos Tonzo, Vanina Arnedo, Miquel A. Kaliontzopoulou, Antigoni J Morphol Research Articles Understanding what drives the existing phenotypic variability has been a major topic of interest for biologists for generations. However, the study of the phenotype may not be straightforward. Indeed, organisms may be interpreted as composite objects, comprising different ecophenotypic traits, which are neither necessarily independent from each other nor do they respond to the same evolutionary pressures. For this reason, a deep biological understanding of the focal organism is essential for any morphological analysis. The spider genus Dysdera provides a particularly well‐suited system for setting up protocols for morphological analyses that encompass a suit of morphological structures in any nonmodel system. This genus has undergone a remarkable diversification in the Canary Islands, where different species perform different ecological roles, exhibiting different levels of trophic specialization or troglomorphic adaptations, which translate into a remarkable interspecific morphological variability. Here, we seek to develop a broad guide, of which morphological characters must be considered, to study the effect of different ecological pressures in spiders and propose a general workflow that will be useful whenever researchers set out to investigate variation in the body plans of different organisms, with data sets comprising a set of morphological traits. We use geometric morphometric methods to quantify variation in different body structures, all of them with diverse phenotypic modifications in their chelicera, prosoma, and legs. We explore the effect of analyzing different combined landmark (LM) configurations of these characters and the degree of morphological integration that they exhibit. Our results suggest that different LM configurations of each of these body parts exhibit a higher degree of integration compared to LM configurations from different structures and that the analysis of each of these body parts captures different aspects of morphological variation, potentially related to different ecological factors. John Wiley and Sons Inc. 2022-10-10 2022-11 /pmc/articles/PMC9828460/ /pubmed/36169046 http://dx.doi.org/10.1002/jmor.21516 Text en © 2022 The Authors. Journal of Morphology published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Articles Bellvert, Adrià Roca‐Cusachs, Marcos Tonzo, Vanina Arnedo, Miquel A. Kaliontzopoulou, Antigoni The Vitruvian spider: Segmenting and integrating over different body parts to describe ecophenotypic variation |
title | The Vitruvian spider: Segmenting and integrating over different body parts to describe ecophenotypic variation |
title_full | The Vitruvian spider: Segmenting and integrating over different body parts to describe ecophenotypic variation |
title_fullStr | The Vitruvian spider: Segmenting and integrating over different body parts to describe ecophenotypic variation |
title_full_unstemmed | The Vitruvian spider: Segmenting and integrating over different body parts to describe ecophenotypic variation |
title_short | The Vitruvian spider: Segmenting and integrating over different body parts to describe ecophenotypic variation |
title_sort | vitruvian spider: segmenting and integrating over different body parts to describe ecophenotypic variation |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9828460/ https://www.ncbi.nlm.nih.gov/pubmed/36169046 http://dx.doi.org/10.1002/jmor.21516 |
work_keys_str_mv | AT bellvertadria thevitruvianspidersegmentingandintegratingoverdifferentbodypartstodescribeecophenotypicvariation AT rocacusachsmarcos thevitruvianspidersegmentingandintegratingoverdifferentbodypartstodescribeecophenotypicvariation AT tonzovanina thevitruvianspidersegmentingandintegratingoverdifferentbodypartstodescribeecophenotypicvariation AT arnedomiquela thevitruvianspidersegmentingandintegratingoverdifferentbodypartstodescribeecophenotypicvariation AT kaliontzopoulouantigoni thevitruvianspidersegmentingandintegratingoverdifferentbodypartstodescribeecophenotypicvariation AT bellvertadria vitruvianspidersegmentingandintegratingoverdifferentbodypartstodescribeecophenotypicvariation AT rocacusachsmarcos vitruvianspidersegmentingandintegratingoverdifferentbodypartstodescribeecophenotypicvariation AT tonzovanina vitruvianspidersegmentingandintegratingoverdifferentbodypartstodescribeecophenotypicvariation AT arnedomiquela vitruvianspidersegmentingandintegratingoverdifferentbodypartstodescribeecophenotypicvariation AT kaliontzopoulouantigoni vitruvianspidersegmentingandintegratingoverdifferentbodypartstodescribeecophenotypicvariation |