Cargando…
Producing chemically accurate atomic Gaussian process regression models by active learning for molecular simulation
Machine learning is becoming increasingly more important in the field of force field development. Never has it been more vital to have chemically accurate machine learning potentials because force fields become more sophisticated and their applications expand. In this study a method for developing c...
Autores principales: | Burn, Matthew J., Popelier, Paul L. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9828508/ https://www.ncbi.nlm.nih.gov/pubmed/36165338 http://dx.doi.org/10.1002/jcc.27006 |
Ejemplares similares
-
Gaussian Process
Regression Models for Predicting
Atomic Energies and Multipole Moments
por: Burn, Matthew J., et al.
Publicado: (2023) -
Construction of
a Gaussian Process Regression Model
of Formamide for Use in Molecular Simulations
por: Brown, Matthew L., et al.
Publicado: (2023) -
Regression with Gaussian Processes
por: Kalia, Saarik
Publicado: (2016) -
Gaussian Process Regression for Materials and Molecules
por: Deringer, Volker L., et al.
Publicado: (2021) -
Estimation of Clustering Parameters Using Gaussian Process Regression
por: Rigby, Paul, et al.
Publicado: (2014)