Cargando…

Translesion synthesis of apurinic/apyrimidic siteanalogues by Y-family DNA polymerase Dbh from Sulfolobus acidocaldarius : Translesion synthesis of apurinic/apyrimidic site analogues

Apurinic/apyrimidic (AP) sites are severe DNA damages and strongly block DNA extension by major DNA polymerases. Y-family DNA polymerases possess a strong ability to bypass AP sites and continue the DNA synthesis reaction, which is called translesion synthesis (TLS) activity. To investigate the effe...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Weiwei, Zhou, Huan, Peng, Li, Yu, Feng, Xu, Qin, Wang, Qisheng, He, Jianhua, Liu, Xipeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9828665/
https://www.ncbi.nlm.nih.gov/pubmed/35920197
http://dx.doi.org/10.3724/abbs.2022045
_version_ 1784867317459451904
author Wang, Weiwei
Zhou, Huan
Peng, Li
Yu, Feng
Xu, Qin
Wang, Qisheng
He, Jianhua
Liu, Xipeng
author_facet Wang, Weiwei
Zhou, Huan
Peng, Li
Yu, Feng
Xu, Qin
Wang, Qisheng
He, Jianhua
Liu, Xipeng
author_sort Wang, Weiwei
collection PubMed
description Apurinic/apyrimidic (AP) sites are severe DNA damages and strongly block DNA extension by major DNA polymerases. Y-family DNA polymerases possess a strong ability to bypass AP sites and continue the DNA synthesis reaction, which is called translesion synthesis (TLS) activity. To investigate the effect of the molecular structure of the AP site on the TLS efficiency of Dbh, a Y-family DNA polymerase from Sulfolobus acidocaldarius, a series of different AP site analogues (various spacers) are used to characterize the bypass efficiency. We find that not only the molecular structure and atomic composition but also the number and position of AP site analogues determine the TLS efficiency of Dbh. Increasing the spacer length decreases TLS activity. The TLS efficiency also decreases when more than one spacer exists on the DNA template. The position of the AP site analogues is also an important factor for TLS. When the spacer is opposite to the first incorporated dNTPs, the TLS efficiency is the lowest, suggesting that AP sites are largely harmful for the formation of hydrogen bonds. These results deepen our understanding of the TLS activity of Y-family DNA polymerases and provide a biochemical basis for elucidating the TLS mechanism in Sulfolobus acidocaldarius cells.
format Online
Article
Text
id pubmed-9828665
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-98286652023-02-10 Translesion synthesis of apurinic/apyrimidic siteanalogues by Y-family DNA polymerase Dbh from Sulfolobus acidocaldarius : Translesion synthesis of apurinic/apyrimidic site analogues Wang, Weiwei Zhou, Huan Peng, Li Yu, Feng Xu, Qin Wang, Qisheng He, Jianhua Liu, Xipeng Acta Biochim Biophys Sin (Shanghai) Research Article Apurinic/apyrimidic (AP) sites are severe DNA damages and strongly block DNA extension by major DNA polymerases. Y-family DNA polymerases possess a strong ability to bypass AP sites and continue the DNA synthesis reaction, which is called translesion synthesis (TLS) activity. To investigate the effect of the molecular structure of the AP site on the TLS efficiency of Dbh, a Y-family DNA polymerase from Sulfolobus acidocaldarius, a series of different AP site analogues (various spacers) are used to characterize the bypass efficiency. We find that not only the molecular structure and atomic composition but also the number and position of AP site analogues determine the TLS efficiency of Dbh. Increasing the spacer length decreases TLS activity. The TLS efficiency also decreases when more than one spacer exists on the DNA template. The position of the AP site analogues is also an important factor for TLS. When the spacer is opposite to the first incorporated dNTPs, the TLS efficiency is the lowest, suggesting that AP sites are largely harmful for the formation of hydrogen bonds. These results deepen our understanding of the TLS activity of Y-family DNA polymerases and provide a biochemical basis for elucidating the TLS mechanism in Sulfolobus acidocaldarius cells. Oxford University Press 2022-05-09 /pmc/articles/PMC9828665/ /pubmed/35920197 http://dx.doi.org/10.3724/abbs.2022045 Text en © The Author(s) 2021. https://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/).
spellingShingle Research Article
Wang, Weiwei
Zhou, Huan
Peng, Li
Yu, Feng
Xu, Qin
Wang, Qisheng
He, Jianhua
Liu, Xipeng
Translesion synthesis of apurinic/apyrimidic siteanalogues by Y-family DNA polymerase Dbh from Sulfolobus acidocaldarius : Translesion synthesis of apurinic/apyrimidic site analogues
title Translesion synthesis of apurinic/apyrimidic siteanalogues by Y-family DNA polymerase Dbh from Sulfolobus acidocaldarius : Translesion synthesis of apurinic/apyrimidic site analogues
title_full Translesion synthesis of apurinic/apyrimidic siteanalogues by Y-family DNA polymerase Dbh from Sulfolobus acidocaldarius : Translesion synthesis of apurinic/apyrimidic site analogues
title_fullStr Translesion synthesis of apurinic/apyrimidic siteanalogues by Y-family DNA polymerase Dbh from Sulfolobus acidocaldarius : Translesion synthesis of apurinic/apyrimidic site analogues
title_full_unstemmed Translesion synthesis of apurinic/apyrimidic siteanalogues by Y-family DNA polymerase Dbh from Sulfolobus acidocaldarius : Translesion synthesis of apurinic/apyrimidic site analogues
title_short Translesion synthesis of apurinic/apyrimidic siteanalogues by Y-family DNA polymerase Dbh from Sulfolobus acidocaldarius : Translesion synthesis of apurinic/apyrimidic site analogues
title_sort translesion synthesis of apurinic/apyrimidic siteanalogues by y-family dna polymerase dbh from sulfolobus acidocaldarius : translesion synthesis of apurinic/apyrimidic site analogues
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9828665/
https://www.ncbi.nlm.nih.gov/pubmed/35920197
http://dx.doi.org/10.3724/abbs.2022045
work_keys_str_mv AT wangweiwei translesionsynthesisofapurinicapyrimidicsiteanaloguesbyyfamilydnapolymerasedbhfromsulfolobusacidocaldariustranslesionsynthesisofapurinicapyrimidicsiteanalogues
AT zhouhuan translesionsynthesisofapurinicapyrimidicsiteanaloguesbyyfamilydnapolymerasedbhfromsulfolobusacidocaldariustranslesionsynthesisofapurinicapyrimidicsiteanalogues
AT pengli translesionsynthesisofapurinicapyrimidicsiteanaloguesbyyfamilydnapolymerasedbhfromsulfolobusacidocaldariustranslesionsynthesisofapurinicapyrimidicsiteanalogues
AT yufeng translesionsynthesisofapurinicapyrimidicsiteanaloguesbyyfamilydnapolymerasedbhfromsulfolobusacidocaldariustranslesionsynthesisofapurinicapyrimidicsiteanalogues
AT xuqin translesionsynthesisofapurinicapyrimidicsiteanaloguesbyyfamilydnapolymerasedbhfromsulfolobusacidocaldariustranslesionsynthesisofapurinicapyrimidicsiteanalogues
AT wangqisheng translesionsynthesisofapurinicapyrimidicsiteanaloguesbyyfamilydnapolymerasedbhfromsulfolobusacidocaldariustranslesionsynthesisofapurinicapyrimidicsiteanalogues
AT hejianhua translesionsynthesisofapurinicapyrimidicsiteanaloguesbyyfamilydnapolymerasedbhfromsulfolobusacidocaldariustranslesionsynthesisofapurinicapyrimidicsiteanalogues
AT liuxipeng translesionsynthesisofapurinicapyrimidicsiteanaloguesbyyfamilydnapolymerasedbhfromsulfolobusacidocaldariustranslesionsynthesisofapurinicapyrimidicsiteanalogues