Cargando…
Gravity sensing and responses in the coordination of the shoot gravitropic setpoint angle
Gravity is one of the fundamental environmental cues that affect plant development. Indeed, the plant architecture in the shoots and roots is modulated by gravity. Stems grow vertically upward, whereas lateral organs, such as the lateral branches in shoots, tend to grow at a specific angle according...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9828789/ https://www.ncbi.nlm.nih.gov/pubmed/36089891 http://dx.doi.org/10.1111/nph.18474 |
_version_ | 1784867345768906752 |
---|---|
author | Kawamoto, Nozomi Morita, Miyo Terao |
author_facet | Kawamoto, Nozomi Morita, Miyo Terao |
author_sort | Kawamoto, Nozomi |
collection | PubMed |
description | Gravity is one of the fundamental environmental cues that affect plant development. Indeed, the plant architecture in the shoots and roots is modulated by gravity. Stems grow vertically upward, whereas lateral organs, such as the lateral branches in shoots, tend to grow at a specific angle according to a gravity vector known as the gravitropic setpoint angle (GSA). During this process, gravity is sensed in specialised gravity‐sensing cells named statocytes, which convert gravity information into biochemical signals, leading to asymmetric auxin distribution and driving asymmetric cell division/expansion in the organs to achieve gravitropism. As a hypothetical offset mechanism against gravitropism to determine the GSA, the anti‐gravitropic offset (AGO) has been proposed. According to this concept, the GSA is a balance of two antagonistic growth components, that is gravitropism and the AGO. Although the nature of the AGO has not been clarified, studies have suggested that gravitropism and the AGO share a common gravity‐sensing mechanism in statocytes. This review discusses the molecular mechanisms underlying gravitropism as well as the hypothetical AGO in the control of the GSA. |
format | Online Article Text |
id | pubmed-9828789 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-98287892023-01-10 Gravity sensing and responses in the coordination of the shoot gravitropic setpoint angle Kawamoto, Nozomi Morita, Miyo Terao New Phytol Review Gravity is one of the fundamental environmental cues that affect plant development. Indeed, the plant architecture in the shoots and roots is modulated by gravity. Stems grow vertically upward, whereas lateral organs, such as the lateral branches in shoots, tend to grow at a specific angle according to a gravity vector known as the gravitropic setpoint angle (GSA). During this process, gravity is sensed in specialised gravity‐sensing cells named statocytes, which convert gravity information into biochemical signals, leading to asymmetric auxin distribution and driving asymmetric cell division/expansion in the organs to achieve gravitropism. As a hypothetical offset mechanism against gravitropism to determine the GSA, the anti‐gravitropic offset (AGO) has been proposed. According to this concept, the GSA is a balance of two antagonistic growth components, that is gravitropism and the AGO. Although the nature of the AGO has not been clarified, studies have suggested that gravitropism and the AGO share a common gravity‐sensing mechanism in statocytes. This review discusses the molecular mechanisms underlying gravitropism as well as the hypothetical AGO in the control of the GSA. John Wiley and Sons Inc. 2022-09-30 2022-12 /pmc/articles/PMC9828789/ /pubmed/36089891 http://dx.doi.org/10.1111/nph.18474 Text en © 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Review Kawamoto, Nozomi Morita, Miyo Terao Gravity sensing and responses in the coordination of the shoot gravitropic setpoint angle |
title | Gravity sensing and responses in the coordination of the shoot gravitropic setpoint angle |
title_full | Gravity sensing and responses in the coordination of the shoot gravitropic setpoint angle |
title_fullStr | Gravity sensing and responses in the coordination of the shoot gravitropic setpoint angle |
title_full_unstemmed | Gravity sensing and responses in the coordination of the shoot gravitropic setpoint angle |
title_short | Gravity sensing and responses in the coordination of the shoot gravitropic setpoint angle |
title_sort | gravity sensing and responses in the coordination of the shoot gravitropic setpoint angle |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9828789/ https://www.ncbi.nlm.nih.gov/pubmed/36089891 http://dx.doi.org/10.1111/nph.18474 |
work_keys_str_mv | AT kawamotonozomi gravitysensingandresponsesinthecoordinationoftheshootgravitropicsetpointangle AT moritamiyoterao gravitysensingandresponsesinthecoordinationoftheshootgravitropicsetpointangle |