Cargando…
Clustering models for hospitals in Jakarta using fuzzy c-means and k-means
After facing the COVID-19 pandemic, national and local governments in Indonesia realized a gap in the distribution of health care and human health practitioners. This research proposes two unsupervised learning methods, K-Means and Fuzzy C-Means (FCM), for clustering a list of hospital data in Jakar...
Autores principales: | Setiawan, Karli Eka, Kurniawan, Afdhal, Chowanda, Andry, Suhartono, Derwin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9829428/ https://www.ncbi.nlm.nih.gov/pubmed/36643178 http://dx.doi.org/10.1016/j.procs.2022.12.146 |
Ejemplares similares
-
The Comparison of Clustering Algorithms K-Means and Fuzzy C-Means for Segmentation Retinal Blood Vessels
por: Wiharto, Wiharto, et al.
Publicado: (2020) -
Algorithms for fuzzy clustering: methods in c-means clustering with applications
por: Miyamoto, Sadaaki, et al.
Publicado: (2008) -
Clustering of COVID-19 data for knowledge discovery using c-means and fuzzy c-means
por: Afzal, Asif, et al.
Publicado: (2021) -
A Unified Formulation of k-Means, Fuzzy c-Means and Gaussian Mixture Model by the Kolmogorov–Nagumo Average
por: Komori, Osamu, et al.
Publicado: (2021) -
Comparison of K-Means and Fuzzy c-Means Algorithm Performance for Automated Determination of the Arterial Input Function
por: Yin, Jiandong, et al.
Publicado: (2014)