Cargando…
Self-supervised learning for remote sensing scene classification under the few shot scenario
Scene classification is a crucial research problem in remote sensing (RS) that has attracted many researchers recently. It has many challenges due to multiple issues, such as: the complexity of remote sensing scenes, the classes overlapping (as a scene may contain objects that belong to foreign clas...
Autores principales: | Alosaimi, Najd, Alhichri, Haikel, Bazi, Yakoub, Ben Youssef, Belgacem, Alajlan, Naif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9829684/ https://www.ncbi.nlm.nih.gov/pubmed/36624136 http://dx.doi.org/10.1038/s41598-022-27313-5 |
Ejemplares similares
-
Unified Generative Adversarial Networks for Multidomain Fingerprint Presentation Attack Detection
por: Sandouka, Soha B., et al.
Publicado: (2021) -
RS-SSKD: Self-Supervision Equipped with Knowledge Distillation for Few-Shot Remote Sensing Scene Classification
por: Zhang, Pei, et al.
Publicado: (2021) -
Insights into few shot learning approaches for image scene classification
por: Soudy, Mohamed, et al.
Publicado: (2021) -
Multimodal Approach for Enhancing Biometric Authentication
por: Ammour, Nassim, et al.
Publicado: (2023) -
Transformers and Generative Adversarial Networks for Liveness Detection in Multitarget Fingerprint Sensors
por: Sandouka, Soha B., et al.
Publicado: (2021)