Cargando…
Data-Driven Identification of Long-Term Glycemia Clusters and Their Individualized Predictors in Finnish Patients with Type 2 Diabetes
PURPOSE: To gain an understanding of the heterogeneous group of type 2 diabetes (T2D) patients, we aimed to identify patients with the homogenous long-term HbA1c trajectories and to predict the trajectory membership for each patient using explainable machine learning methods and different clinical-,...
Autores principales: | Lavikainen, Piia, Chandra, Gunjan, Siirtola, Pekka, Tamminen, Satu, Ihalapathirana, Anusha T, Röning, Juha, Laatikainen, Tiina, Martikainen, Janne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9829833/ https://www.ncbi.nlm.nih.gov/pubmed/36636731 http://dx.doi.org/10.2147/CLEP.S380828 |
Ejemplares similares
-
Predicting Emotion with Biosignals: A Comparison of Classification and Regression Models for Estimating Valence and Arousal Level Using Wearable Sensors
por: Siirtola, Pekka, et al.
Publicado: (2023) -
Data-driven long-term glycaemic control trajectories and their associated health and economic outcomes in Finnish patients with incident type 2 diabetes
por: Lavikainen, Piia, et al.
Publicado: (2022) -
Effects of COVID-19 Pandemic and Lockdown on Monitoring and Treatment Balance of Finnish Coronary Heart Disease and Type 2 Diabetes Patients
por: Lavikainen, Piia, et al.
Publicado: (2022) -
Impact of co-payment level increase of antidiabetic medications on glycaemic control: an interrupted time-series study among Finnish patients with type 2 diabetes
por: Lavikainen, Piia, et al.
Publicado: (2020) -
LDL-cholesterol trajectories and statin treatment in Finnish type 2 diabetes patients: a growth mixture model
por: Inglin, Laura, et al.
Publicado: (2021)