Cargando…
Segmentation of Clinical Target Volume From CT Images for Cervical Cancer Using Deep Learning
Introduction: Segmentation of clinical target volume (CTV) from CT images is critical for cervical cancer brachytherapy, but this task is time-consuming, laborious, and not reproducible. In this work, we aim to propose an end-to-end model to segment CTV for cervical cancer brachytherapy accurately....
Autores principales: | Huang, Mingxu, Feng, Chaolu, Sun, Deyu, Cui, Ming, Zhao, Dazhe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9829994/ https://www.ncbi.nlm.nih.gov/pubmed/36601655 http://dx.doi.org/10.1177/15330338221139164 |
Ejemplares similares
-
Prognostic Predicting Model of Pancreatic Body Tail Carcinoma Using Clinical and CT Radiomic Data
por: An, Peng, et al.
Publicado: (2023) -
Predicting Model of Biochemical Recurrence of Prostate Carcinoma (PCa-BCR) Using MR Perfusion-Weighted Imaging-Based Radiomics
por: An, Peng, et al.
Publicado: (2023) -
Collecting Duct Carcinoma of the Kidney: A Single-Center
Retrospective Study of 23 Cases
por: Tang, Chaopeng, et al.
Publicado: (2023) -
Clinical Features and Computed Tomography Radiomics-Based Model for Predicting Pancreatic Ductal Adenocarcinoma and Focal Mass-Forming Pancreatitis
por: Ye, Yingjian, et al.
Publicado: (2023) -
Prediction of Prognosis of Tongue Squamous Cell Carcinoma Based on Clinical MR Imaging Data Modeling
por: Liu, Junjie, et al.
Publicado: (2023)