Cargando…
Deactivating environmental strains of Escherichia coli, Enterococcus faecalis and Clostridium perfringens from a real wastewater effluent using UV-LEDs
Environmental bacteria strains are known to be more resistant but studies on UV-LEDs are scarce, especially for Clostridium perfringens and Enterococcus faecalis. UV-LEDs of different wavelengths (268 nm, 279 nm and 307 nm) have been used for treating real wastewater from the effluent of the municip...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830170/ https://www.ncbi.nlm.nih.gov/pubmed/36636203 http://dx.doi.org/10.1016/j.heliyon.2022.e12628 |
Sumario: | Environmental bacteria strains are known to be more resistant but studies on UV-LEDs are scarce, especially for Clostridium perfringens and Enterococcus faecalis. UV-LEDs of different wavelengths (268 nm, 279 nm and 307 nm) have been used for treating real wastewater from the effluent of the municipal plant in Linares (Spain), with real organic matter content, for E. coli, Enterococcus faecalis and Clostridium perfringens disinfection. Experimental results demonstrate that 268 nm was the most effective wavelength for inactivation of the three different bacteria strains: E. coli showed an inactivation rate of 0.561 at 268 nm vs. 0.245 at 279 nm and 0.0029 for 307 nm; E. faecalis inactivation rate was 0.313 at 268 nm, 0.231 at 279 nm and 0.0023 at 307 nm; and C. perfringens inactivation rate was 0.084 at 268 nm, 0.033 at 279 nm and 6.9e-4 at 307 nm. In general, 307 nm wavelength showed a significantly lower inactivation rate so it would not be recommended for practical applications. C. Perfringens required higher UV doses and longer times to achieve complete inactivation. |
---|