Cargando…
Cardiotoxicity of T-Cell Antineoplastic Therapies: JACC: CardioOncology Primer
T-cell therapies, such as chimeric antigen receptor (CAR) T-cell, bispecific T-cell engager (BiTE) and tumor-infiltrating lymphocyte (TIL) therapies, fight cancer cells harboring specific tumor antigens. However, activation of the immune response by these therapies can lead to a systemic inflammator...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830211/ https://www.ncbi.nlm.nih.gov/pubmed/36636447 http://dx.doi.org/10.1016/j.jaccao.2022.07.014 |
Sumario: | T-cell therapies, such as chimeric antigen receptor (CAR) T-cell, bispecific T-cell engager (BiTE) and tumor-infiltrating lymphocyte (TIL) therapies, fight cancer cells harboring specific tumor antigens. However, activation of the immune response by these therapies can lead to a systemic inflammatory response, termed cytokine release syndrome (CRS), that can result in adverse events, including cardiotoxicity. Retrospective studies have shown that cardiovascular complications occur in 10% to 20% of patients who develop high-grade CRS after CAR T-cell therapy and can include cardiomyopathy, heart failure, arrhythmias, and myocardial infarction. While cardiotoxicities have been less commonly reported with BiTE and TIL therapies, systematic surveillance for cardiotoxicity has not been performed. Patients undergoing T-cell therapies should be screened for cardiovascular conditions that may not be able to withstand the hemodynamic perturbations imposed by CRS. Generalized management of CRS, including the use of the interleukin-6 antagonist, tocilizumab, for high-grade CRS, is used to mitigate the risk of cardiotoxicity. |
---|