Cargando…
Bleaching-free, lignin-tolerant, high-yield production of nanocrystalline cellulose from lignocellulosic biomass
Nanocrystalline cellulose (NCC) preparation in an integrated fractionation manner is expected to solve the problems of low yield and environmental impact in the traditional process. An integrated fractionation strategy for NCC production from wood was developed through catalytic biomass fractionatio...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830227/ https://www.ncbi.nlm.nih.gov/pubmed/36636346 http://dx.doi.org/10.1016/j.isci.2022.105771 |
Sumario: | Nanocrystalline cellulose (NCC) preparation in an integrated fractionation manner is expected to solve the problems of low yield and environmental impact in the traditional process. An integrated fractionation strategy for NCC production from wood was developed through catalytic biomass fractionation, the partial dissolution of cellulose-rich materials (CRMs) in aqueous tetrabutylphosphonium hydroxide, and short-term ultrasonication. The presented process could tolerate a high CRM lignin content of 21.2 wt % and provide a high NCC yield of 76.6 wt % (34.3 wt % of the original biomass). The increase in the CRM lignin content decreased the NCC yield, facilitated the crystal transition of NCC from cellulose I to cellulose II, and showed no apparent effects on the NCC morphology. A partial/selective dissolution mechanism is proposed for the presented strategy. This study provided a promising efficient fractionation-based method toward comprehensive and high-value utilization of lignocellulosic biomass through effective delignification and high-yield NCC production. |
---|