Cargando…
Solvent-induced assembly of mono- and divalent silica nanoparticles
Particles with attractive patches are appealing candidates to be used as building units to fabricate novel colloidal architectures by self-assembly. Here, we report the synthesis of one-patch silica nanoparticles, which consist of silica half-spheres whose concave face carries in its center a polyme...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830498/ https://www.ncbi.nlm.nih.gov/pubmed/36703910 http://dx.doi.org/10.3762/bjnano.14.6 |
Sumario: | Particles with attractive patches are appealing candidates to be used as building units to fabricate novel colloidal architectures by self-assembly. Here, we report the synthesis of one-patch silica nanoparticles, which consist of silica half-spheres whose concave face carries in its center a polymeric patch made of grafted polystyrene chains. The multistage synthesis allows for a fine control of the patch-to-particle size ratio from 0.23 to 0.57. The assembly of the patchy nanoparticles can be triggered by reducing the solvent quality for the polystyrene chains. Dimers or trimers can be obtained by tuning the patch-to-particle size ratio. When mixed with two-patch nanoparticles, one-patch nanoparticles control the length of the resulting chains by behaving as colloidal chain stoppers. The present strategy allows for future elaboration of novel colloidal structures by controlled assembly of nanoparticles. |
---|