Cargando…
On data normalization and batch-effect correction for tumor subtyping with microRNA data
The discovery of new tumor subtypes has been aided by transcriptomics profiling. However, some new subtypes can be irreproducible due to data artifacts that arise from disparate experimental handling. To deal with these artifacts, methods for data normalization and batch-effect correction have been...
Autores principales: | Wu, Yilin, Yuen, Becky Wing-Yan, Wei, Yingying, Qin, Li-Xuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830544/ https://www.ncbi.nlm.nih.gov/pubmed/36632610 http://dx.doi.org/10.1093/nargab/lqac100 |
Ejemplares similares
-
A comprehensive framework for analysis of microRNA sequencing data in metastatic colorectal cancer
por: Høye, Eirik, et al.
Publicado: (2022) -
Characterizing batch effects and binding site-specific variability in ChIP-seq data
por: Teng, Mingxiang, et al.
Publicado: (2021) -
SelectBCM tool: a batch evaluation framework to select the most appropriate batch-correction methods for bulk transcriptome analysis
por: Mishra, Madhulika, et al.
Publicado: (2023) -
Transfer learning compensates limited data, batch effects and technological heterogeneity in single-cell sequencing
por: Park, Youngjun, et al.
Publicado: (2021) -
HIV Vpr protein upregulates microRNA-122 expression and stimulates hepatitis C virus replication
por: Peng, Milin, et al.
Publicado: (2015)