Cargando…
Ensemble feature selection with data-driven thresholding for Alzheimer's disease biomarker discovery
BACKGROUND: Feature selection is often used to identify the important features in a dataset but can produce unstable results when applied to high-dimensional data. The stability of feature selection can be improved with the use of feature selection ensembles, which aggregate the results of multiple...
Autores principales: | Spooner, Annette, Mohammadi, Gelareh, Sachdev, Perminder S., Brodaty, Henry, Sowmya, Arcot |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830744/ https://www.ncbi.nlm.nih.gov/pubmed/36624372 http://dx.doi.org/10.1186/s12859-022-05132-9 |
Ejemplares similares
-
A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction
por: Spooner, Annette, et al.
Publicado: (2020) -
Plasma protein profiling of Mild Cognitive Impairment and Alzheimer’s disease using iTRAQ quantitative proteomics
por: Song, Fei, et al.
Publicado: (2014) -
Novel ThickNet features for the discrimination of amnestic MCI subtypes
por: Raamana, Pradeep Reddy, et al.
Publicado: (2014) -
SHRINKING AND GROWING SOCIAL NETWORKS IN THE SYDNEY MEMORY AND AGEING STUDY
por: Casey, Anne-Nicole S, et al.
Publicado: (2019) -
Lifespan Mental Activity Predicts Diminished Rate of Hippocampal Atrophy
por: Valenzuela, Michael J., et al.
Publicado: (2008)