Cargando…
Semiparametric modelling of diabetic retinopathy among people with type II diabetes mellitus
BACKGROUND: The proportion of patients with diabetic retinopathy (DR) has grown with increasing number of diabetes mellitus patients in the world. It is among the major causes of blindness worldwide. The main objective of this study was to identify contributing risk factors of DR among people with t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830762/ https://www.ncbi.nlm.nih.gov/pubmed/36624377 http://dx.doi.org/10.1186/s12874-022-01794-4 |
Sumario: | BACKGROUND: The proportion of patients with diabetic retinopathy (DR) has grown with increasing number of diabetes mellitus patients in the world. It is among the major causes of blindness worldwide. The main objective of this study was to identify contributing risk factors of DR among people with type II diabetes mellitus. METHOD: A sample of 191 people with type II diabetes mellitus was selected from the Black Lion Specialized Hospital diabetic unit from 1 March 2018 to 1 April 2018. A multivariate stochastic regression imputation technique was applied to impute the missing values. The response variable, DR is a categorical variable with two outcomes. Based on the relationship derived from the exploratory analysis, the odds of having DR were not necessarily linearly related to the continuous predictors for this sample of patients. Therefore, a semiparametric model was proposed to identify the risk factors of DR. RESULT: From the sample of 191 people with type II diabetes mellitus, 98 (51.3%) of them had DR. The results of semiparametric regression model revealed that being male, hypertension, insulin treatment, and frequency of clinical visits had a significant linear relationships with the odds of having DR. In addition, the log- odds of having DR has a significant nonlinear relation with the interaction of age by gender (for female patients), duration of diabetes, interaction of cholesterol level by gender (for female patients), haemoglobin A1c, and interaction of haemoglobin A1c by fasting blood glucose with degrees of freedom [Formula: see text] , respectively. The interaction of age by gender and cholesterol level by gender appear non significant for male patients. The result from the interaction of haemoglobin A1c (HbA1c) by fasting blood glucose (FBG) showed that the risk of DR is high when the level of HbA1c and FBG were simultaneously high. CONCLUSION: Clinical variables related to people with type II diabetes mellitus were strong predictive factors of DR. Hence, health professionals should be cautious about the possible nonlinear effects of clinical variables, interaction of clinical variables, and interaction of clinical variables with sociodemographic variables on the log odds of having DR. Furthermore, to improve intervention strategies similar studies should be conducted across the country. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12874-022-01794-4. |
---|