Cargando…

Comparison of whole-body 18F-FDG PET/CT and PET/MRI for distant metastases in patients with malignant tumors: a meta-analysis

BACKGROUND: As a first-line imaging modality, whole-body fluorine-18 fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) and 18F-FDG PET/magnetic resonance imaging (MRI) had been widely applied in clinical practice. However, 18F-FDG PET/MRI may be superior to PET...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Cici, Liang, Zhishan, Liu, Wei, Zeng, Xuwen, Mo, Yuzhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830828/
https://www.ncbi.nlm.nih.gov/pubmed/36624425
http://dx.doi.org/10.1186/s12885-022-10493-8
Descripción
Sumario:BACKGROUND: As a first-line imaging modality, whole-body fluorine-18 fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) and 18F-FDG PET/magnetic resonance imaging (MRI) had been widely applied in clinical practice. However, 18F-FDG PET/MRI may be superior to PET/CT for the diagnosis of distant metastases in patients with advanced-stage. Therefore, it is timely and important to systematically determine the diagnostic accuracy of 18F-FDG PET/MRI compared with that of 18F-FDG PET/CT for the diagnosis of distant metastases. METHODS: This study aimed to compare the diagnostic accuracy of 18F-FDG PET/CT and PET/MRI for the diagnosis of distant metastases in patients with malignant tumors. Relevant studies using both 18F-FDG PET/CT and PET/MRI for assessment of distant metastases in patients with malignant tumors were searched in PubMed, Embase, The Cochrane Library, and Scopus from January 2010 to November 2023. Two reviewers independently selected studies according to the inclusion and exclusion criteria. A reviewer extracted relevant data and assessed the quality of the eligible studies. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and area under the summary receiver operating characteristic curve (AUC) for 18F-FDG PET/CT and PET/MRI were analyzed. Subgroup analysis was performed. RESULTS: Across 14 studies (1042 patients), 18F-FDG PET/MRI had a higher sensitivity (0.87 versus 0.81), AUC value (0.98 versus 0.95), and similar specificity (0.97 versus 0.97), than PET/CT for detecting distant metastases. In 3 studies of breast cancer (182 patients), 18F-FDG PET/MRI had a higher sensitivity (0.95 versus 0.87) and specificity (0.96 versus 0.94) than PET/CT. In 5 studies of lung cancer (429 patients), 18F-FDG PET/CT had a higher sensitivity (0.87 versus 0.84) and a lower specificity (0.95 versus 0.96) to PET/MRI. CONCLUSIONS: 18F-FDG PET/MRI and PET/CT both performed well as detectors of distant metastases in patients with malignant tumors, and the former has higher sensitivity. The subgroup analysis highlights that 18F-FDG PET/MRI and PET/CT hold different advantages for distant metastases staging in different tumors, PET/MRI has a higher accuracy in patients with breast cancer patients, while PET/CT has a higher accuracy in patients with lung cancer.