Cargando…

Senescent stroma induces nuclear deformations in cancer cells via the inhibition of RhoA/ROCK/myosin II-based cytoskeletal tension

The presence of senescent cells within tissues has been functionally linked to malignant transformations. Here, using tension-gauge tethers technology, particle-tracking microrheology, and quantitative microscopy, we demonstrate that senescent-associated secretory phenotype (SASP) derived from senes...

Descripción completa

Detalles Bibliográficos
Autores principales: Aifuwa, Ivie, Kim, Byoung Choul, Kamat, Pratik, Starich, Bartholomew, Agrawal, Anshika, Tanrioven, Derin, Luperchio, Teresa R, Valencia, Angela M Jimenez, Perestrelo, Tania, Reddy, Karen, Ha, Taekjip, Philip, Jude M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830950/
https://www.ncbi.nlm.nih.gov/pubmed/36712940
http://dx.doi.org/10.1093/pnasnexus/pgac270
_version_ 1784867770528169984
author Aifuwa, Ivie
Kim, Byoung Choul
Kamat, Pratik
Starich, Bartholomew
Agrawal, Anshika
Tanrioven, Derin
Luperchio, Teresa R
Valencia, Angela M Jimenez
Perestrelo, Tania
Reddy, Karen
Ha, Taekjip
Philip, Jude M
author_facet Aifuwa, Ivie
Kim, Byoung Choul
Kamat, Pratik
Starich, Bartholomew
Agrawal, Anshika
Tanrioven, Derin
Luperchio, Teresa R
Valencia, Angela M Jimenez
Perestrelo, Tania
Reddy, Karen
Ha, Taekjip
Philip, Jude M
author_sort Aifuwa, Ivie
collection PubMed
description The presence of senescent cells within tissues has been functionally linked to malignant transformations. Here, using tension-gauge tethers technology, particle-tracking microrheology, and quantitative microscopy, we demonstrate that senescent-associated secretory phenotype (SASP) derived from senescent fibroblasts impose nuclear lobulations and volume shrinkage on malignant cells, which stems from the loss of RhoA/ROCK/myosin II-based cortical tension. This loss in cytoskeletal tension induces decreased cellular contractility, adhesion, and increased mechanical compliance. These SASP-induced morphological changes are, in part, mediated by Lamin A/C. These findings suggest that SASP induces defective outside-in mechanotransduction from actomyosin fibers in the cytoplasm to the nuclear lamina, thereby triggering a cascade of biophysical and biomolecular changes in cells that associate with malignant transformations.
format Online
Article
Text
id pubmed-9830950
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-98309502023-01-26 Senescent stroma induces nuclear deformations in cancer cells via the inhibition of RhoA/ROCK/myosin II-based cytoskeletal tension Aifuwa, Ivie Kim, Byoung Choul Kamat, Pratik Starich, Bartholomew Agrawal, Anshika Tanrioven, Derin Luperchio, Teresa R Valencia, Angela M Jimenez Perestrelo, Tania Reddy, Karen Ha, Taekjip Philip, Jude M PNAS Nexus Research Report The presence of senescent cells within tissues has been functionally linked to malignant transformations. Here, using tension-gauge tethers technology, particle-tracking microrheology, and quantitative microscopy, we demonstrate that senescent-associated secretory phenotype (SASP) derived from senescent fibroblasts impose nuclear lobulations and volume shrinkage on malignant cells, which stems from the loss of RhoA/ROCK/myosin II-based cortical tension. This loss in cytoskeletal tension induces decreased cellular contractility, adhesion, and increased mechanical compliance. These SASP-induced morphological changes are, in part, mediated by Lamin A/C. These findings suggest that SASP induces defective outside-in mechanotransduction from actomyosin fibers in the cytoplasm to the nuclear lamina, thereby triggering a cascade of biophysical and biomolecular changes in cells that associate with malignant transformations. Oxford University Press 2022-12-06 /pmc/articles/PMC9830950/ /pubmed/36712940 http://dx.doi.org/10.1093/pnasnexus/pgac270 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of the National Academy of Sciences. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Research Report
Aifuwa, Ivie
Kim, Byoung Choul
Kamat, Pratik
Starich, Bartholomew
Agrawal, Anshika
Tanrioven, Derin
Luperchio, Teresa R
Valencia, Angela M Jimenez
Perestrelo, Tania
Reddy, Karen
Ha, Taekjip
Philip, Jude M
Senescent stroma induces nuclear deformations in cancer cells via the inhibition of RhoA/ROCK/myosin II-based cytoskeletal tension
title Senescent stroma induces nuclear deformations in cancer cells via the inhibition of RhoA/ROCK/myosin II-based cytoskeletal tension
title_full Senescent stroma induces nuclear deformations in cancer cells via the inhibition of RhoA/ROCK/myosin II-based cytoskeletal tension
title_fullStr Senescent stroma induces nuclear deformations in cancer cells via the inhibition of RhoA/ROCK/myosin II-based cytoskeletal tension
title_full_unstemmed Senescent stroma induces nuclear deformations in cancer cells via the inhibition of RhoA/ROCK/myosin II-based cytoskeletal tension
title_short Senescent stroma induces nuclear deformations in cancer cells via the inhibition of RhoA/ROCK/myosin II-based cytoskeletal tension
title_sort senescent stroma induces nuclear deformations in cancer cells via the inhibition of rhoa/rock/myosin ii-based cytoskeletal tension
topic Research Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830950/
https://www.ncbi.nlm.nih.gov/pubmed/36712940
http://dx.doi.org/10.1093/pnasnexus/pgac270
work_keys_str_mv AT aifuwaivie senescentstromainducesnucleardeformationsincancercellsviatheinhibitionofrhoarockmyosiniibasedcytoskeletaltension
AT kimbyoungchoul senescentstromainducesnucleardeformationsincancercellsviatheinhibitionofrhoarockmyosiniibasedcytoskeletaltension
AT kamatpratik senescentstromainducesnucleardeformationsincancercellsviatheinhibitionofrhoarockmyosiniibasedcytoskeletaltension
AT starichbartholomew senescentstromainducesnucleardeformationsincancercellsviatheinhibitionofrhoarockmyosiniibasedcytoskeletaltension
AT agrawalanshika senescentstromainducesnucleardeformationsincancercellsviatheinhibitionofrhoarockmyosiniibasedcytoskeletaltension
AT tanriovenderin senescentstromainducesnucleardeformationsincancercellsviatheinhibitionofrhoarockmyosiniibasedcytoskeletaltension
AT luperchioteresar senescentstromainducesnucleardeformationsincancercellsviatheinhibitionofrhoarockmyosiniibasedcytoskeletaltension
AT valenciaangelamjimenez senescentstromainducesnucleardeformationsincancercellsviatheinhibitionofrhoarockmyosiniibasedcytoskeletaltension
AT perestrelotania senescentstromainducesnucleardeformationsincancercellsviatheinhibitionofrhoarockmyosiniibasedcytoskeletaltension
AT reddykaren senescentstromainducesnucleardeformationsincancercellsviatheinhibitionofrhoarockmyosiniibasedcytoskeletaltension
AT hataekjip senescentstromainducesnucleardeformationsincancercellsviatheinhibitionofrhoarockmyosiniibasedcytoskeletaltension
AT philipjudem senescentstromainducesnucleardeformationsincancercellsviatheinhibitionofrhoarockmyosiniibasedcytoskeletaltension