Cargando…

Meta-topologies define distinct anatomical classes of brain tumours linked to histology and survival

The current World Health Organization classification integrates histological and molecular features of brain tumours. The aim of this study was to identify generalizable topological patterns with the potential to add an anatomical dimension to the classification of brain tumours. We applied non-nega...

Descripción completa

Detalles Bibliográficos
Autores principales: Kernbach, Julius M, Delev, Daniel, Neuloh, Georg, Clusmann, Hans, Bzdok, Danilo, Eickhoff, Simon B, Staartjes, Victor E, Vasella, Flavio, Weller, Michael, Regli, Luca, Serra, Carlo, Krayenbühl, Niklaus, Akeret, Kevin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830987/
https://www.ncbi.nlm.nih.gov/pubmed/36632188
http://dx.doi.org/10.1093/braincomms/fcac336
_version_ 1784867776464158720
author Kernbach, Julius M
Delev, Daniel
Neuloh, Georg
Clusmann, Hans
Bzdok, Danilo
Eickhoff, Simon B
Staartjes, Victor E
Vasella, Flavio
Weller, Michael
Regli, Luca
Serra, Carlo
Krayenbühl, Niklaus
Akeret, Kevin
author_facet Kernbach, Julius M
Delev, Daniel
Neuloh, Georg
Clusmann, Hans
Bzdok, Danilo
Eickhoff, Simon B
Staartjes, Victor E
Vasella, Flavio
Weller, Michael
Regli, Luca
Serra, Carlo
Krayenbühl, Niklaus
Akeret, Kevin
author_sort Kernbach, Julius M
collection PubMed
description The current World Health Organization classification integrates histological and molecular features of brain tumours. The aim of this study was to identify generalizable topological patterns with the potential to add an anatomical dimension to the classification of brain tumours. We applied non-negative matrix factorization as an unsupervised pattern discovery strategy to the fine-grained topographic tumour profiles of 936 patients with neuroepithelial tumours and brain metastases. From the anatomical features alone, this machine learning algorithm enabled the extraction of latent topological tumour patterns, termed meta-topologies. The optimal part-based representation was automatically determined in 10 000 split-half iterations. We further characterized each meta-topology’s unique histopathologic profile and survival probability, thus linking important biological and clinical information to the underlying anatomical patterns. In neuroepithelial tumours, six meta-topologies were extracted, each detailing a transpallial pattern with distinct parenchymal and ventricular compositions. We identified one infratentorial, one allopallial, three neopallial (parieto-occipital, frontal, temporal) and one unisegmental meta-topology. Each meta-topology mapped to distinct histopathologic and molecular profiles. The unisegmental meta-topology showed the strongest anatomical–clinical link demonstrating a survival advantage in histologically identical tumours. Brain metastases separated to an infra- and supratentorial meta-topology with anatomical patterns highlighting their affinity to the cortico-subcortical boundary of arterial watershed areas.Using a novel data-driven approach, we identified generalizable topological patterns in both neuroepithelial tumours and brain metastases. Differences in the histopathologic profiles and prognosis of these anatomical tumour classes provide insights into the heterogeneity of tumour biology and might add to personalized clinical decision-making.
format Online
Article
Text
id pubmed-9830987
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-98309872023-01-10 Meta-topologies define distinct anatomical classes of brain tumours linked to histology and survival Kernbach, Julius M Delev, Daniel Neuloh, Georg Clusmann, Hans Bzdok, Danilo Eickhoff, Simon B Staartjes, Victor E Vasella, Flavio Weller, Michael Regli, Luca Serra, Carlo Krayenbühl, Niklaus Akeret, Kevin Brain Commun Original Article The current World Health Organization classification integrates histological and molecular features of brain tumours. The aim of this study was to identify generalizable topological patterns with the potential to add an anatomical dimension to the classification of brain tumours. We applied non-negative matrix factorization as an unsupervised pattern discovery strategy to the fine-grained topographic tumour profiles of 936 patients with neuroepithelial tumours and brain metastases. From the anatomical features alone, this machine learning algorithm enabled the extraction of latent topological tumour patterns, termed meta-topologies. The optimal part-based representation was automatically determined in 10 000 split-half iterations. We further characterized each meta-topology’s unique histopathologic profile and survival probability, thus linking important biological and clinical information to the underlying anatomical patterns. In neuroepithelial tumours, six meta-topologies were extracted, each detailing a transpallial pattern with distinct parenchymal and ventricular compositions. We identified one infratentorial, one allopallial, three neopallial (parieto-occipital, frontal, temporal) and one unisegmental meta-topology. Each meta-topology mapped to distinct histopathologic and molecular profiles. The unisegmental meta-topology showed the strongest anatomical–clinical link demonstrating a survival advantage in histologically identical tumours. Brain metastases separated to an infra- and supratentorial meta-topology with anatomical patterns highlighting their affinity to the cortico-subcortical boundary of arterial watershed areas.Using a novel data-driven approach, we identified generalizable topological patterns in both neuroepithelial tumours and brain metastases. Differences in the histopathologic profiles and prognosis of these anatomical tumour classes provide insights into the heterogeneity of tumour biology and might add to personalized clinical decision-making. Oxford University Press 2022-12-22 /pmc/articles/PMC9830987/ /pubmed/36632188 http://dx.doi.org/10.1093/braincomms/fcac336 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Kernbach, Julius M
Delev, Daniel
Neuloh, Georg
Clusmann, Hans
Bzdok, Danilo
Eickhoff, Simon B
Staartjes, Victor E
Vasella, Flavio
Weller, Michael
Regli, Luca
Serra, Carlo
Krayenbühl, Niklaus
Akeret, Kevin
Meta-topologies define distinct anatomical classes of brain tumours linked to histology and survival
title Meta-topologies define distinct anatomical classes of brain tumours linked to histology and survival
title_full Meta-topologies define distinct anatomical classes of brain tumours linked to histology and survival
title_fullStr Meta-topologies define distinct anatomical classes of brain tumours linked to histology and survival
title_full_unstemmed Meta-topologies define distinct anatomical classes of brain tumours linked to histology and survival
title_short Meta-topologies define distinct anatomical classes of brain tumours linked to histology and survival
title_sort meta-topologies define distinct anatomical classes of brain tumours linked to histology and survival
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830987/
https://www.ncbi.nlm.nih.gov/pubmed/36632188
http://dx.doi.org/10.1093/braincomms/fcac336
work_keys_str_mv AT kernbachjuliusm metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival
AT delevdaniel metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival
AT neulohgeorg metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival
AT clusmannhans metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival
AT bzdokdanilo metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival
AT eickhoffsimonb metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival
AT staartjesvictore metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival
AT vasellaflavio metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival
AT wellermichael metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival
AT regliluca metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival
AT serracarlo metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival
AT krayenbuhlniklaus metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival
AT akeretkevin metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival