Cargando…
Meta-topologies define distinct anatomical classes of brain tumours linked to histology and survival
The current World Health Organization classification integrates histological and molecular features of brain tumours. The aim of this study was to identify generalizable topological patterns with the potential to add an anatomical dimension to the classification of brain tumours. We applied non-nega...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830987/ https://www.ncbi.nlm.nih.gov/pubmed/36632188 http://dx.doi.org/10.1093/braincomms/fcac336 |
_version_ | 1784867776464158720 |
---|---|
author | Kernbach, Julius M Delev, Daniel Neuloh, Georg Clusmann, Hans Bzdok, Danilo Eickhoff, Simon B Staartjes, Victor E Vasella, Flavio Weller, Michael Regli, Luca Serra, Carlo Krayenbühl, Niklaus Akeret, Kevin |
author_facet | Kernbach, Julius M Delev, Daniel Neuloh, Georg Clusmann, Hans Bzdok, Danilo Eickhoff, Simon B Staartjes, Victor E Vasella, Flavio Weller, Michael Regli, Luca Serra, Carlo Krayenbühl, Niklaus Akeret, Kevin |
author_sort | Kernbach, Julius M |
collection | PubMed |
description | The current World Health Organization classification integrates histological and molecular features of brain tumours. The aim of this study was to identify generalizable topological patterns with the potential to add an anatomical dimension to the classification of brain tumours. We applied non-negative matrix factorization as an unsupervised pattern discovery strategy to the fine-grained topographic tumour profiles of 936 patients with neuroepithelial tumours and brain metastases. From the anatomical features alone, this machine learning algorithm enabled the extraction of latent topological tumour patterns, termed meta-topologies. The optimal part-based representation was automatically determined in 10 000 split-half iterations. We further characterized each meta-topology’s unique histopathologic profile and survival probability, thus linking important biological and clinical information to the underlying anatomical patterns. In neuroepithelial tumours, six meta-topologies were extracted, each detailing a transpallial pattern with distinct parenchymal and ventricular compositions. We identified one infratentorial, one allopallial, three neopallial (parieto-occipital, frontal, temporal) and one unisegmental meta-topology. Each meta-topology mapped to distinct histopathologic and molecular profiles. The unisegmental meta-topology showed the strongest anatomical–clinical link demonstrating a survival advantage in histologically identical tumours. Brain metastases separated to an infra- and supratentorial meta-topology with anatomical patterns highlighting their affinity to the cortico-subcortical boundary of arterial watershed areas.Using a novel data-driven approach, we identified generalizable topological patterns in both neuroepithelial tumours and brain metastases. Differences in the histopathologic profiles and prognosis of these anatomical tumour classes provide insights into the heterogeneity of tumour biology and might add to personalized clinical decision-making. |
format | Online Article Text |
id | pubmed-9830987 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-98309872023-01-10 Meta-topologies define distinct anatomical classes of brain tumours linked to histology and survival Kernbach, Julius M Delev, Daniel Neuloh, Georg Clusmann, Hans Bzdok, Danilo Eickhoff, Simon B Staartjes, Victor E Vasella, Flavio Weller, Michael Regli, Luca Serra, Carlo Krayenbühl, Niklaus Akeret, Kevin Brain Commun Original Article The current World Health Organization classification integrates histological and molecular features of brain tumours. The aim of this study was to identify generalizable topological patterns with the potential to add an anatomical dimension to the classification of brain tumours. We applied non-negative matrix factorization as an unsupervised pattern discovery strategy to the fine-grained topographic tumour profiles of 936 patients with neuroepithelial tumours and brain metastases. From the anatomical features alone, this machine learning algorithm enabled the extraction of latent topological tumour patterns, termed meta-topologies. The optimal part-based representation was automatically determined in 10 000 split-half iterations. We further characterized each meta-topology’s unique histopathologic profile and survival probability, thus linking important biological and clinical information to the underlying anatomical patterns. In neuroepithelial tumours, six meta-topologies were extracted, each detailing a transpallial pattern with distinct parenchymal and ventricular compositions. We identified one infratentorial, one allopallial, three neopallial (parieto-occipital, frontal, temporal) and one unisegmental meta-topology. Each meta-topology mapped to distinct histopathologic and molecular profiles. The unisegmental meta-topology showed the strongest anatomical–clinical link demonstrating a survival advantage in histologically identical tumours. Brain metastases separated to an infra- and supratentorial meta-topology with anatomical patterns highlighting their affinity to the cortico-subcortical boundary of arterial watershed areas.Using a novel data-driven approach, we identified generalizable topological patterns in both neuroepithelial tumours and brain metastases. Differences in the histopathologic profiles and prognosis of these anatomical tumour classes provide insights into the heterogeneity of tumour biology and might add to personalized clinical decision-making. Oxford University Press 2022-12-22 /pmc/articles/PMC9830987/ /pubmed/36632188 http://dx.doi.org/10.1093/braincomms/fcac336 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Kernbach, Julius M Delev, Daniel Neuloh, Georg Clusmann, Hans Bzdok, Danilo Eickhoff, Simon B Staartjes, Victor E Vasella, Flavio Weller, Michael Regli, Luca Serra, Carlo Krayenbühl, Niklaus Akeret, Kevin Meta-topologies define distinct anatomical classes of brain tumours linked to histology and survival |
title | Meta-topologies define distinct anatomical classes of brain tumours linked to histology and survival |
title_full | Meta-topologies define distinct anatomical classes of brain tumours linked to histology and survival |
title_fullStr | Meta-topologies define distinct anatomical classes of brain tumours linked to histology and survival |
title_full_unstemmed | Meta-topologies define distinct anatomical classes of brain tumours linked to histology and survival |
title_short | Meta-topologies define distinct anatomical classes of brain tumours linked to histology and survival |
title_sort | meta-topologies define distinct anatomical classes of brain tumours linked to histology and survival |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830987/ https://www.ncbi.nlm.nih.gov/pubmed/36632188 http://dx.doi.org/10.1093/braincomms/fcac336 |
work_keys_str_mv | AT kernbachjuliusm metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival AT delevdaniel metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival AT neulohgeorg metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival AT clusmannhans metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival AT bzdokdanilo metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival AT eickhoffsimonb metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival AT staartjesvictore metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival AT vasellaflavio metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival AT wellermichael metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival AT regliluca metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival AT serracarlo metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival AT krayenbuhlniklaus metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival AT akeretkevin metatopologiesdefinedistinctanatomicalclassesofbraintumourslinkedtohistologyandsurvival |