Cargando…
Systematic analysis of alternative splicing in time course data using Spycone
MOTIVATION: During disease progression or organism development, alternative splicing may lead to isoform switches that demonstrate similar temporal patterns and reflect the alternative splicing co-regulation of such genes. Tools for dynamic process analysis usually neglect alternative splicing. RESU...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9831059/ https://www.ncbi.nlm.nih.gov/pubmed/36579860 http://dx.doi.org/10.1093/bioinformatics/btac846 |
Sumario: | MOTIVATION: During disease progression or organism development, alternative splicing may lead to isoform switches that demonstrate similar temporal patterns and reflect the alternative splicing co-regulation of such genes. Tools for dynamic process analysis usually neglect alternative splicing. RESULTS: Here, we propose Spycone, a splicing-aware framework for time course data analysis. Spycone exploits a novel IS detection algorithm and offers downstream analysis such as network and gene set enrichment. We demonstrate the performance of Spycone using simulated and real-world data of SARS-CoV-2 infection. AVAILABILITY AND IMPLEMENTATION: The Spycone package is available as a PyPI package. The source code of Spycone is available under the GPLv3 license at https://github.com/yollct/spycone and the documentation at https://spycone.readthedocs.io/en/latest/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
---|