Cargando…
Adversarial attacks on spiking convolutional neural networks for event-based vision
Event-based dynamic vision sensors provide very sparse output in the form of spikes, which makes them suitable for low-power applications. Convolutional spiking neural networks model such event-based data and develop their full energy-saving potential when deployed on asynchronous neuromorphic hardw...
Autores principales: | Büchel, Julian, Lenz, Gregor, Hu, Yalun, Sheik, Sadique, Sorbaro, Martino |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9831110/ https://www.ncbi.nlm.nih.gov/pubmed/36636576 http://dx.doi.org/10.3389/fnins.2022.1068193 |
Ejemplares similares
-
Optimizing the Energy Consumption of Spiking Neural Networks for Neuromorphic Applications
por: Sorbaro, Martino, et al.
Publicado: (2020) -
EXODUS: Stable and efficient training of spiking neural networks
por: Bauer, Felix C., et al.
Publicado: (2023) -
Improving the adversarial transferability with relational graphs ensemble adversarial attack
por: Pi, Jiatian, et al.
Publicado: (2023) -
Derivative-free optimization adversarial attacks for graph convolutional networks
por: Yang, Runze, et al.
Publicado: (2021) -
SCTN: Event-based object tracking with energy-efficient deep convolutional spiking neural networks
por: Ji, Mingcheng, et al.
Publicado: (2023)