Cargando…
Deep Gradient Learning for Efficient Camouflaged Object Detection
This paper introduces deep gradient network (DGNet), a novel deep framework that exploits object gradient supervision for camouflaged object detection (COD). It decouples the task into two connected branches, i.e., a context and a texture encoder. The essential connection is the gradient-induced tra...
Autores principales: | Ji, Ge-Peng, Fan, Deng-Ping, Chou, Yu-Cheng, Dai, Dengxin, Liniger, Alexander, Van Gool, Luc |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9831373/ http://dx.doi.org/10.1007/s11633-022-1365-9 |
Ejemplares similares
-
Cascade and Fusion: A Deep Learning Approach for Camouflaged Object Sensing
por: Huang, Kaihong, et al.
Publicado: (2021) -
Camouflaging moving objects: crypsis and masquerade
por: Hall, Joanna R, et al.
Publicado: (2017) -
Research on Camouflaged Human Target Detection Based on Deep Learning
por: Zhang, Wei, et al.
Publicado: (2022) -
Assessment of Camouflage Effectiveness Based on Perceived Color Difference and Gradient Magnitude
por: Bai, Xueqiong, et al.
Publicado: (2020) -
Guided multi-scale refinement network for camouflaged object detection
por: Xu, Xiuqi, et al.
Publicado: (2022)