Cargando…

Additively Manufactured NdFeB Polyphenylene Sulfide Halbach Magnets to Generate Variable Magnetic Fields for Neutron Reflectometry

Halbach arrays are the most efficient closed structures for generating directed magnetic fields and gradients, and are widely used in various electric machines. We utilized fused deposition modeling-based Big Area Additive Manufacturing technology to print customized, compensated concentric Halbach...

Descripción completa

Detalles Bibliográficos
Autores principales: Lamichhane, Tej Nath, Charlton, Timothy R., Andrews, Brian, Malaviya, Devanshi, Pathak, Arjun K., Ambaye, Haile, Doucet, Mathieu, Lauter, Valeria, Katsaras, John, Post, Brian K., Paranthaman, Mariappan Parans
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mary Ann Liebert, Inc., publishers 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9831552/
https://www.ncbi.nlm.nih.gov/pubmed/36654742
http://dx.doi.org/10.1089/3dp.2020.0340
_version_ 1784867871371821056
author Lamichhane, Tej Nath
Charlton, Timothy R.
Andrews, Brian
Malaviya, Devanshi
Pathak, Arjun K.
Ambaye, Haile
Doucet, Mathieu
Lauter, Valeria
Katsaras, John
Post, Brian K.
Paranthaman, Mariappan Parans
author_facet Lamichhane, Tej Nath
Charlton, Timothy R.
Andrews, Brian
Malaviya, Devanshi
Pathak, Arjun K.
Ambaye, Haile
Doucet, Mathieu
Lauter, Valeria
Katsaras, John
Post, Brian K.
Paranthaman, Mariappan Parans
author_sort Lamichhane, Tej Nath
collection PubMed
description Halbach arrays are the most efficient closed structures for generating directed magnetic fields and gradients, and are widely used in various electric machines. We utilized fused deposition modeling-based Big Area Additive Manufacturing technology to print customized, compensated concentric Halbach array rings, using polyphenylene sulfide-bonded NdFeB permanent magnets for polarized neutron reflectometry. The Halbach rings could generate a 0 ≤ B ≤ 0.30 T field, while preserving 90% polarization of an axial neutron beam. Polarized neutron beams are used to study a wide range of structural and magnetic phenomena spanning physics, chemistry, and biology. In this study, we demonstrate the effectiveness of additive manufacturing for producing prototype Halbach arrays, characterize their magnetic properties, and generated magnetic fields, and discuss the conservation of neutron beam polarization as a function of magnetic field.
format Online
Article
Text
id pubmed-9831552
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Mary Ann Liebert, Inc., publishers
record_format MEDLINE/PubMed
spelling pubmed-98315522023-01-17 Additively Manufactured NdFeB Polyphenylene Sulfide Halbach Magnets to Generate Variable Magnetic Fields for Neutron Reflectometry Lamichhane, Tej Nath Charlton, Timothy R. Andrews, Brian Malaviya, Devanshi Pathak, Arjun K. Ambaye, Haile Doucet, Mathieu Lauter, Valeria Katsaras, John Post, Brian K. Paranthaman, Mariappan Parans 3D Print Addit Manuf Original Articles Halbach arrays are the most efficient closed structures for generating directed magnetic fields and gradients, and are widely used in various electric machines. We utilized fused deposition modeling-based Big Area Additive Manufacturing technology to print customized, compensated concentric Halbach array rings, using polyphenylene sulfide-bonded NdFeB permanent magnets for polarized neutron reflectometry. The Halbach rings could generate a 0 ≤ B ≤ 0.30 T field, while preserving 90% polarization of an axial neutron beam. Polarized neutron beams are used to study a wide range of structural and magnetic phenomena spanning physics, chemistry, and biology. In this study, we demonstrate the effectiveness of additive manufacturing for producing prototype Halbach arrays, characterize their magnetic properties, and generated magnetic fields, and discuss the conservation of neutron beam polarization as a function of magnetic field. Mary Ann Liebert, Inc., publishers 2022-08-01 2022-08-03 /pmc/articles/PMC9831552/ /pubmed/36654742 http://dx.doi.org/10.1089/3dp.2020.0340 Text en © Tej Nath Lamichhane et al. 2022; Published by Mary Ann Liebert, Inc. https://creativecommons.org/licenses/by/4.0/This Open Access article is distributed under the terms of the Creative Commons License [CC-BY] (http://creativecommons.org/licenses/by/4.0 (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Lamichhane, Tej Nath
Charlton, Timothy R.
Andrews, Brian
Malaviya, Devanshi
Pathak, Arjun K.
Ambaye, Haile
Doucet, Mathieu
Lauter, Valeria
Katsaras, John
Post, Brian K.
Paranthaman, Mariappan Parans
Additively Manufactured NdFeB Polyphenylene Sulfide Halbach Magnets to Generate Variable Magnetic Fields for Neutron Reflectometry
title Additively Manufactured NdFeB Polyphenylene Sulfide Halbach Magnets to Generate Variable Magnetic Fields for Neutron Reflectometry
title_full Additively Manufactured NdFeB Polyphenylene Sulfide Halbach Magnets to Generate Variable Magnetic Fields for Neutron Reflectometry
title_fullStr Additively Manufactured NdFeB Polyphenylene Sulfide Halbach Magnets to Generate Variable Magnetic Fields for Neutron Reflectometry
title_full_unstemmed Additively Manufactured NdFeB Polyphenylene Sulfide Halbach Magnets to Generate Variable Magnetic Fields for Neutron Reflectometry
title_short Additively Manufactured NdFeB Polyphenylene Sulfide Halbach Magnets to Generate Variable Magnetic Fields for Neutron Reflectometry
title_sort additively manufactured ndfeb polyphenylene sulfide halbach magnets to generate variable magnetic fields for neutron reflectometry
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9831552/
https://www.ncbi.nlm.nih.gov/pubmed/36654742
http://dx.doi.org/10.1089/3dp.2020.0340
work_keys_str_mv AT lamichhanetejnath additivelymanufacturedndfebpolyphenylenesulfidehalbachmagnetstogeneratevariablemagneticfieldsforneutronreflectometry
AT charltontimothyr additivelymanufacturedndfebpolyphenylenesulfidehalbachmagnetstogeneratevariablemagneticfieldsforneutronreflectometry
AT andrewsbrian additivelymanufacturedndfebpolyphenylenesulfidehalbachmagnetstogeneratevariablemagneticfieldsforneutronreflectometry
AT malaviyadevanshi additivelymanufacturedndfebpolyphenylenesulfidehalbachmagnetstogeneratevariablemagneticfieldsforneutronreflectometry
AT pathakarjunk additivelymanufacturedndfebpolyphenylenesulfidehalbachmagnetstogeneratevariablemagneticfieldsforneutronreflectometry
AT ambayehaile additivelymanufacturedndfebpolyphenylenesulfidehalbachmagnetstogeneratevariablemagneticfieldsforneutronreflectometry
AT doucetmathieu additivelymanufacturedndfebpolyphenylenesulfidehalbachmagnetstogeneratevariablemagneticfieldsforneutronreflectometry
AT lautervaleria additivelymanufacturedndfebpolyphenylenesulfidehalbachmagnetstogeneratevariablemagneticfieldsforneutronreflectometry
AT katsarasjohn additivelymanufacturedndfebpolyphenylenesulfidehalbachmagnetstogeneratevariablemagneticfieldsforneutronreflectometry
AT postbriank additivelymanufacturedndfebpolyphenylenesulfidehalbachmagnetstogeneratevariablemagneticfieldsforneutronreflectometry
AT paranthamanmariappanparans additivelymanufacturedndfebpolyphenylenesulfidehalbachmagnetstogeneratevariablemagneticfieldsforneutronreflectometry