Cargando…
Mapping abandoned cropland using Within-Year Sentinel-2 time series
Against the background of the COVID-19 pandemic and various armed conflicts, the world is experiencing an unprecedented food crisis. The reclamation of abandoned cropland with food production potential may increase the global food supply in a short period of time, ensuring food security. At present,...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9831782/ https://www.ncbi.nlm.nih.gov/pubmed/36643960 http://dx.doi.org/10.1016/j.catena.2023.106924 |
Sumario: | Against the background of the COVID-19 pandemic and various armed conflicts, the world is experiencing an unprecedented food crisis. The reclamation of abandoned cropland with food production potential may increase the global food supply in a short period of time, ensuring food security. At present, the extraction of abandoned cropland is mainly based on low- and medium-resolution remote sensing image data, making it difficult to extract fragmented areas in mountainous regions and to distinguish between abandoned cropland and transitional classes (such as fallow cropland). We developed a change-detection method based on within-year Sentinel-2 time series to extract cropland abandoned from 2018 to 2021 and defined four types of croplands, namely spontaneously abandoned, induced abandoned, fallow, and lost cropland, using Linxia County in mountainous China as the study region. First, cropland objects were generated from multi-temporal Sentinel-2 images using the multi-resolution segmentation method, and the land use map of Linxia County from 2017 to 2021 was drawn using random forest classifier. Second, through defining and identifying different cropland types, the interannual dynamic changes in cropland from 2018 to 2021 were extracted by analyzing the annual land use change trajectory. Third, by analyzing the normalized difference vegetation index (NDVI) time series of cropland within-year, the active and cultivated cropland sites within-year were extracted by threshold segmentation. Finally, the changes in the four cropland types were extracted by intersecting the two result types. Our method captured the object level changes well (overall mapping accuracy = 93 ± 5 %), and the extraction accuracy of abandoned cropland reached 81 ± 2 %. Abandoned cropland was mostly located in areas of medium quality and with a moderate distance from rural settlements. Reclamation can potentially increase the grain production in Linxia County by at least 3.6 % and needs to be combined with the local natural geography and human activities. Our method is a robust method for extracting abandoned cropland and may be applied to other research related to land use change. |
---|