Cargando…

Effect of different dentin moisture on the push-out strength of bioceramic root canal sealer

BACKGROUND/PURPOSE: Different moisture condition may affect the adhesion between obturation materials and root canal walls, thus further affect the quality of root canal obturation. The aim of this study was to evaluate the influence of dentin moisture conditions after different root canal drying pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jia-Sha, Bai, Wei, Wang, Yue, Liang, Yu-Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Association for Dental Sciences of the Republic of China 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9831826/
https://www.ncbi.nlm.nih.gov/pubmed/36643254
http://dx.doi.org/10.1016/j.jds.2022.06.025
_version_ 1784867930337443840
author Wang, Jia-Sha
Bai, Wei
Wang, Yue
Liang, Yu-Hong
author_facet Wang, Jia-Sha
Bai, Wei
Wang, Yue
Liang, Yu-Hong
author_sort Wang, Jia-Sha
collection PubMed
description BACKGROUND/PURPOSE: Different moisture condition may affect the adhesion between obturation materials and root canal walls, thus further affect the quality of root canal obturation. The aim of this study was to evaluate the influence of dentin moisture conditions after different root canal drying protocols on the push-out strength of bioceramic root canal sealer. MATERIALS AND METHODS: Twenty root canals from extracted human decoronated premolars were prepared in vitro to #30/0.09 taper and assigned to 4 moisture condition groups after using different root canal drying protocols: normal moisture (paper point) group: the canals were blot dried with paper points until the last one appeared dry. Ethanol dry group: the canals were dried with paper points followed by dehydration with 95% ethanol. Isopropanol dry group: the canals were dried with paper points followed by dehydration with 70% isopropanol. Complete dry group: the canals were dried in an air-blowing thermostatic oven for at least 6 h until there was no change in weight at an interval of 1 h. After drying, the canals were obturated with bioceramic sealer iRoot SP. Then, each root was sectioned into eight slices with 1-mm-thick using a diamond saw (40 slices each group). The push-out strength was tested for each slice between the sealer and dentin wall using a universal testing machine at a crosshead speed of 0.5 mm/min, and failure modes were recorded. Two-way analysis of variance and Tukey test were used to analyze the push-out strength. Logarithmic linear regression analysis was used to compare the failure modes. RESULTS: Push-out strength was statistically different in different moisture groups (P < 0.05). After drying using paper point, iRoot SP specimens showed the highest push-out strength (2.04 ± 0.03 MPa), followed by 95% ethanol, 70% isopropanol. The lowest push-out strength (0.68 ± 0.04 MPa) was observed under complete dry. For the failure modes, the majority were cohesive failures in the coronal and middle thirds of the root; while in the apical third, mixed failure was common. CONCLUSION: Different drying protocols influenced the push-out strength between bioceramic sealer and canal wall.
format Online
Article
Text
id pubmed-9831826
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Association for Dental Sciences of the Republic of China
record_format MEDLINE/PubMed
spelling pubmed-98318262023-01-13 Effect of different dentin moisture on the push-out strength of bioceramic root canal sealer Wang, Jia-Sha Bai, Wei Wang, Yue Liang, Yu-Hong J Dent Sci Original Article BACKGROUND/PURPOSE: Different moisture condition may affect the adhesion between obturation materials and root canal walls, thus further affect the quality of root canal obturation. The aim of this study was to evaluate the influence of dentin moisture conditions after different root canal drying protocols on the push-out strength of bioceramic root canal sealer. MATERIALS AND METHODS: Twenty root canals from extracted human decoronated premolars were prepared in vitro to #30/0.09 taper and assigned to 4 moisture condition groups after using different root canal drying protocols: normal moisture (paper point) group: the canals were blot dried with paper points until the last one appeared dry. Ethanol dry group: the canals were dried with paper points followed by dehydration with 95% ethanol. Isopropanol dry group: the canals were dried with paper points followed by dehydration with 70% isopropanol. Complete dry group: the canals were dried in an air-blowing thermostatic oven for at least 6 h until there was no change in weight at an interval of 1 h. After drying, the canals were obturated with bioceramic sealer iRoot SP. Then, each root was sectioned into eight slices with 1-mm-thick using a diamond saw (40 slices each group). The push-out strength was tested for each slice between the sealer and dentin wall using a universal testing machine at a crosshead speed of 0.5 mm/min, and failure modes were recorded. Two-way analysis of variance and Tukey test were used to analyze the push-out strength. Logarithmic linear regression analysis was used to compare the failure modes. RESULTS: Push-out strength was statistically different in different moisture groups (P < 0.05). After drying using paper point, iRoot SP specimens showed the highest push-out strength (2.04 ± 0.03 MPa), followed by 95% ethanol, 70% isopropanol. The lowest push-out strength (0.68 ± 0.04 MPa) was observed under complete dry. For the failure modes, the majority were cohesive failures in the coronal and middle thirds of the root; while in the apical third, mixed failure was common. CONCLUSION: Different drying protocols influenced the push-out strength between bioceramic sealer and canal wall. Association for Dental Sciences of the Republic of China 2023-01 2022-07-12 /pmc/articles/PMC9831826/ /pubmed/36643254 http://dx.doi.org/10.1016/j.jds.2022.06.025 Text en © 2022 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier B.V. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Article
Wang, Jia-Sha
Bai, Wei
Wang, Yue
Liang, Yu-Hong
Effect of different dentin moisture on the push-out strength of bioceramic root canal sealer
title Effect of different dentin moisture on the push-out strength of bioceramic root canal sealer
title_full Effect of different dentin moisture on the push-out strength of bioceramic root canal sealer
title_fullStr Effect of different dentin moisture on the push-out strength of bioceramic root canal sealer
title_full_unstemmed Effect of different dentin moisture on the push-out strength of bioceramic root canal sealer
title_short Effect of different dentin moisture on the push-out strength of bioceramic root canal sealer
title_sort effect of different dentin moisture on the push-out strength of bioceramic root canal sealer
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9831826/
https://www.ncbi.nlm.nih.gov/pubmed/36643254
http://dx.doi.org/10.1016/j.jds.2022.06.025
work_keys_str_mv AT wangjiasha effectofdifferentdentinmoistureonthepushoutstrengthofbioceramicrootcanalsealer
AT baiwei effectofdifferentdentinmoistureonthepushoutstrengthofbioceramicrootcanalsealer
AT wangyue effectofdifferentdentinmoistureonthepushoutstrengthofbioceramicrootcanalsealer
AT liangyuhong effectofdifferentdentinmoistureonthepushoutstrengthofbioceramicrootcanalsealer