Cargando…
Oral squamous cell carcinoma diagnosis in digitized histological images using convolutional neural network
BACKGROUND/PURPOSE: Diagnostic methods of oral squamous cell carcinoma (SCC) using artificial intelligence (AI) and digital-histopathologic images have been developed. However, previous AI training methods have focused on the cellular atypia given by the training of high-magnification images, and li...
Autores principales: | Oya, Kaori, Kokomoto, Kazuma, Nozaki, Kazunori, Toyosawa, Satoru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Association for Dental Sciences of the Republic of China
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9831840/ https://www.ncbi.nlm.nih.gov/pubmed/36643248 http://dx.doi.org/10.1016/j.jds.2022.08.017 |
Ejemplares similares
-
Intraoral image generation by progressive growing of generative adversarial network and evaluation of generated image quality by dentists
por: Kokomoto, Kazuma, et al.
Publicado: (2021) -
Interpretable Diagnosis for Whole-Slide Melanoma Histology Images Using Convolutional Neural Network
por: Xie, Peizhen, et al.
Publicado: (2021) -
Head and Neck Cancer Detection in Digitized Whole-Slide Histology Using Convolutional Neural Networks
por: Halicek, Martin, et al.
Publicado: (2019) -
Classification of breast cancer histology images using Convolutional Neural Networks
por: Araújo, Teresa, et al.
Publicado: (2017) -
Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides
por: Gertych, Arkadiusz, et al.
Publicado: (2019)