Cargando…

Predictors of success in establishing orthotopic patient-derived xenograft models of triple negative breast cancer

Patient-derived xenograft (PDX) models of breast cancer are an effective discovery platform and tool for preclinical pharmacologic testing and biomarker identification. We established orthotopic PDX models of triple negative breast cancer (TNBC) from the primary breast tumors of patients prior to an...

Descripción completa

Detalles Bibliográficos
Autores principales: Echeverria, Gloria V., Cai, Shirong, Tu, Yizheng, Shao, Jiansu, Powell, Emily, Redwood, Abena B., Jiang, Yan, McCoy, Aaron, Rinkenbaugh, Amanda L., Lau, Rosanna, Trevarton, Alexander J., Fu, Chunxiao, Gould, Rebekah, Ravenberg, Elizabeth E., Huo, Lei, Candelaria, Rosalind, Santiago, Lumarie, Adrada, Beatriz E., Lane, Deanna L., Rauch, Gaiane M., Yang, Wei T., White, Jason B., Chang, Jeffrey T., Moulder, Stacy L., Symmans, W. Fraser, Hilsenbeck, Susan G., Piwnica-Worms, Helen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9831981/
https://www.ncbi.nlm.nih.gov/pubmed/36627285
http://dx.doi.org/10.1038/s41523-022-00502-1
_version_ 1784867963232321536
author Echeverria, Gloria V.
Cai, Shirong
Tu, Yizheng
Shao, Jiansu
Powell, Emily
Redwood, Abena B.
Jiang, Yan
McCoy, Aaron
Rinkenbaugh, Amanda L.
Lau, Rosanna
Trevarton, Alexander J.
Fu, Chunxiao
Gould, Rebekah
Ravenberg, Elizabeth E.
Huo, Lei
Candelaria, Rosalind
Santiago, Lumarie
Adrada, Beatriz E.
Lane, Deanna L.
Rauch, Gaiane M.
Yang, Wei T.
White, Jason B.
Chang, Jeffrey T.
Moulder, Stacy L.
Symmans, W. Fraser
Hilsenbeck, Susan G.
Piwnica-Worms, Helen
author_facet Echeverria, Gloria V.
Cai, Shirong
Tu, Yizheng
Shao, Jiansu
Powell, Emily
Redwood, Abena B.
Jiang, Yan
McCoy, Aaron
Rinkenbaugh, Amanda L.
Lau, Rosanna
Trevarton, Alexander J.
Fu, Chunxiao
Gould, Rebekah
Ravenberg, Elizabeth E.
Huo, Lei
Candelaria, Rosalind
Santiago, Lumarie
Adrada, Beatriz E.
Lane, Deanna L.
Rauch, Gaiane M.
Yang, Wei T.
White, Jason B.
Chang, Jeffrey T.
Moulder, Stacy L.
Symmans, W. Fraser
Hilsenbeck, Susan G.
Piwnica-Worms, Helen
author_sort Echeverria, Gloria V.
collection PubMed
description Patient-derived xenograft (PDX) models of breast cancer are an effective discovery platform and tool for preclinical pharmacologic testing and biomarker identification. We established orthotopic PDX models of triple negative breast cancer (TNBC) from the primary breast tumors of patients prior to and following neoadjuvant chemotherapy (NACT) while they were enrolled in the ARTEMIS trial (NCT02276443). Serial biopsies were obtained from patients prior to treatment (pre-NACT), from poorly responsive disease after four cycles of Adriamycin and cyclophosphamide (AC, mid-NACT), and in cases of AC-resistance, after a 3-month course of different experimental therapies and/or additional chemotherapy (post-NACT). Our study cohort includes a total of 269 fine needle aspirates (FNAs) from 217 women, generating a total of 62 PDX models (overall success-rate = 23%). Success of PDX engraftment was generally higher from those cancers that proved to be treatment-resistant, whether poorly responsive to AC as determined by ultrasound measurements mid-NACT (p = 0.063), RCB II/III status after NACT (p = 0.046), or metastatic relapse within 2 years of surgery (p = 0.008). TNBC molecular subtype determined from gene expression microarrays of pre-NACT tumors revealed no significant association with PDX engraftment rate (p = 0.877). Finally, we developed a statistical model predictive of PDX engraftment using percent Ki67 positive cells in the patient’s diagnostic biopsy, positive lymph node status at diagnosis, and low volumetric reduction of the patient’s tumor following AC treatment. This novel bank of 62 PDX models of TNBC provides a valuable resource for biomarker discovery and preclinical therapeutic trials aimed at improving neoadjuvant response rates for patients with TNBC.
format Online
Article
Text
id pubmed-9831981
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-98319812023-01-12 Predictors of success in establishing orthotopic patient-derived xenograft models of triple negative breast cancer Echeverria, Gloria V. Cai, Shirong Tu, Yizheng Shao, Jiansu Powell, Emily Redwood, Abena B. Jiang, Yan McCoy, Aaron Rinkenbaugh, Amanda L. Lau, Rosanna Trevarton, Alexander J. Fu, Chunxiao Gould, Rebekah Ravenberg, Elizabeth E. Huo, Lei Candelaria, Rosalind Santiago, Lumarie Adrada, Beatriz E. Lane, Deanna L. Rauch, Gaiane M. Yang, Wei T. White, Jason B. Chang, Jeffrey T. Moulder, Stacy L. Symmans, W. Fraser Hilsenbeck, Susan G. Piwnica-Worms, Helen NPJ Breast Cancer Article Patient-derived xenograft (PDX) models of breast cancer are an effective discovery platform and tool for preclinical pharmacologic testing and biomarker identification. We established orthotopic PDX models of triple negative breast cancer (TNBC) from the primary breast tumors of patients prior to and following neoadjuvant chemotherapy (NACT) while they were enrolled in the ARTEMIS trial (NCT02276443). Serial biopsies were obtained from patients prior to treatment (pre-NACT), from poorly responsive disease after four cycles of Adriamycin and cyclophosphamide (AC, mid-NACT), and in cases of AC-resistance, after a 3-month course of different experimental therapies and/or additional chemotherapy (post-NACT). Our study cohort includes a total of 269 fine needle aspirates (FNAs) from 217 women, generating a total of 62 PDX models (overall success-rate = 23%). Success of PDX engraftment was generally higher from those cancers that proved to be treatment-resistant, whether poorly responsive to AC as determined by ultrasound measurements mid-NACT (p = 0.063), RCB II/III status after NACT (p = 0.046), or metastatic relapse within 2 years of surgery (p = 0.008). TNBC molecular subtype determined from gene expression microarrays of pre-NACT tumors revealed no significant association with PDX engraftment rate (p = 0.877). Finally, we developed a statistical model predictive of PDX engraftment using percent Ki67 positive cells in the patient’s diagnostic biopsy, positive lymph node status at diagnosis, and low volumetric reduction of the patient’s tumor following AC treatment. This novel bank of 62 PDX models of TNBC provides a valuable resource for biomarker discovery and preclinical therapeutic trials aimed at improving neoadjuvant response rates for patients with TNBC. Nature Publishing Group UK 2023-01-10 /pmc/articles/PMC9831981/ /pubmed/36627285 http://dx.doi.org/10.1038/s41523-022-00502-1 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Echeverria, Gloria V.
Cai, Shirong
Tu, Yizheng
Shao, Jiansu
Powell, Emily
Redwood, Abena B.
Jiang, Yan
McCoy, Aaron
Rinkenbaugh, Amanda L.
Lau, Rosanna
Trevarton, Alexander J.
Fu, Chunxiao
Gould, Rebekah
Ravenberg, Elizabeth E.
Huo, Lei
Candelaria, Rosalind
Santiago, Lumarie
Adrada, Beatriz E.
Lane, Deanna L.
Rauch, Gaiane M.
Yang, Wei T.
White, Jason B.
Chang, Jeffrey T.
Moulder, Stacy L.
Symmans, W. Fraser
Hilsenbeck, Susan G.
Piwnica-Worms, Helen
Predictors of success in establishing orthotopic patient-derived xenograft models of triple negative breast cancer
title Predictors of success in establishing orthotopic patient-derived xenograft models of triple negative breast cancer
title_full Predictors of success in establishing orthotopic patient-derived xenograft models of triple negative breast cancer
title_fullStr Predictors of success in establishing orthotopic patient-derived xenograft models of triple negative breast cancer
title_full_unstemmed Predictors of success in establishing orthotopic patient-derived xenograft models of triple negative breast cancer
title_short Predictors of success in establishing orthotopic patient-derived xenograft models of triple negative breast cancer
title_sort predictors of success in establishing orthotopic patient-derived xenograft models of triple negative breast cancer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9831981/
https://www.ncbi.nlm.nih.gov/pubmed/36627285
http://dx.doi.org/10.1038/s41523-022-00502-1
work_keys_str_mv AT echeverriagloriav predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT caishirong predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT tuyizheng predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT shaojiansu predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT powellemily predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT redwoodabenab predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT jiangyan predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT mccoyaaron predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT rinkenbaughamandal predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT laurosanna predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT trevartonalexanderj predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT fuchunxiao predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT gouldrebekah predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT ravenbergelizabethe predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT huolei predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT candelariarosalind predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT santiagolumarie predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT adradabeatrize predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT lanedeannal predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT rauchgaianem predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT yangweit predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT whitejasonb predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT changjeffreyt predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT moulderstacyl predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT symmanswfraser predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT hilsenbecksusang predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer
AT piwnicawormshelen predictorsofsuccessinestablishingorthotopicpatientderivedxenograftmodelsoftriplenegativebreastcancer