Cargando…
Machine learning models to accelerate the design of polymeric long-acting injectables
Long-acting injectables are considered one of the most promising therapeutic strategies for the treatment of chronic diseases as they can afford improved therapeutic efficacy, safety, and patient compliance. The use of polymer materials in such a drug formulation strategy can offer unparalleled dive...
Autores principales: | Bannigan, Pauric, Bao, Zeqing, Hickman, Riley J., Aldeghi, Matteo, Häse, Florian, Aspuru-Guzik, Alán, Allen, Christine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832011/ https://www.ncbi.nlm.nih.gov/pubmed/36627280 http://dx.doi.org/10.1038/s41467-022-35343-w |
Ejemplares similares
-
Self-driving laboratories: A paradigm shift in nanomedicine development
por: Hickman, Riley J., et al.
Publicado: (2023) -
Golem: an algorithm for robust experiment and process optimization
por: Aldeghi, Matteo, et al.
Publicado: (2021) -
Data evaluating triamcinolone acetonide and triamcinolone hexacetonide loaded poly(δ-valerolactone-co-allyl-δ-valerolactone) microparticles
por: Bao, Zeqing, et al.
Publicado: (2023) -
Machine learning for quantum dynamics: deep learning of excitation energy transfer properties
por: Häse, Florian, et al.
Publicado: (2017) -
Shifting the Paradigm on Cannabis Safety
por: Bannigan, Pauric, et al.
Publicado: (2022)