Cargando…

Calibration of Cohorts of Virtual Patient Heart Models Using Bayesian History Matching

Previous patient-specific model calibration techniques have treated each patient independently, making the methods expensive for large-scale clinical adoption. In this work, we show how we can reuse simulations to accelerate the patient-specific model calibration pipeline. To represent anatomy, we u...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodero, Cristobal, Longobardi, Stefano, Augustin, Christoph, Strocchi, Marina, Plank, Gernot, Lamata, Pablo, Niederer, Steven A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832095/
https://www.ncbi.nlm.nih.gov/pubmed/36271218
http://dx.doi.org/10.1007/s10439-022-03095-9
Descripción
Sumario:Previous patient-specific model calibration techniques have treated each patient independently, making the methods expensive for large-scale clinical adoption. In this work, we show how we can reuse simulations to accelerate the patient-specific model calibration pipeline. To represent anatomy, we used a Statistical Shape Model and to represent function, we ran electrophysiological simulations. We study the use of 14 biomarkers to calibrate the model, training one Gaussian Process Emulator (GPE) per biomarker. To fit the models, we followed a Bayesian History Matching (BHM) strategy, wherein each iteration a region of the parameter space is ruled out if the emulation with that set of parameter values produces is “implausible”. We found that without running any extra simulations we can find 87.41% of the non-implausible parameter combinations. Moreover, we showed how reducing the uncertainty of the measurements from 10 to 5% can reduce the final parameter space by 6 orders of magnitude. This innovation allows for a model fitting technique, therefore reducing the computational load of future biomedical studies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10439-022-03095-9.