Cargando…
Introducing the Dendrify framework for incorporating dendrites to spiking neural networks
Computational modeling has been indispensable for understanding how subcellular neuronal features influence circuit processing. However, the role of dendritic computations in network-level operations remains largely unexplored. This is partly because existing tools do not allow the development of re...
Autores principales: | Pagkalos, Michalis, Chavlis, Spyridon, Poirazi, Panayiota |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832130/ https://www.ncbi.nlm.nih.gov/pubmed/36627284 http://dx.doi.org/10.1038/s41467-022-35747-8 |
Ejemplares similares
-
Synaptic turnover promotes efficient learning in bio-realistic spiking neural networks
por: Malakasis, Nikos, et al.
Publicado: (2023) -
Dendrites of dentate gyrus granule cells contribute to pattern separation by controlling sparsity
por: Chavlis, Spyridon, et al.
Publicado: (2016) -
Dendrites and Efficiency: Optimizing Performance and Resource Utilization
por: Makarov, Roman, et al.
Publicado: (2023) -
Leveraging dendritic properties to advance machine learning and neuro-inspired computing
por: Pagkalos, Michalis, et al.
Publicado: (2023) -
Lateral entorhinal cortex inputs modulate hippocampal dendritic excitability by recruiting a local disinhibitory microcircuit
por: Bilash, Olesia M., et al.
Publicado: (2023)