Cargando…
Learning the dynamics of realistic models of C. elegans nervous system with recurrent neural networks
Given the inherent complexity of the human nervous system, insight into the dynamics of brain activity can be gained from studying smaller and simpler organisms. While some of the potential target organisms are simple enough that their behavioural and structural biology might be well-known and under...
Autores principales: | Barbulescu, Ruxandra, Mestre, Gonçalo, Oliveira, Arlindo L., Silveira, Luís Miguel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832137/ https://www.ncbi.nlm.nih.gov/pubmed/36627317 http://dx.doi.org/10.1038/s41598-022-25421-w |
Ejemplares similares
-
Complex dynamics in recurrent cortical networks based on spatially realistic connectivities
por: Voges, N., et al.
Publicado: (2012) -
Synaptic turnover promotes efficient learning in bio-realistic spiking neural networks
por: Malakasis, Nikos, et al.
Publicado: (2023) -
Learning with recurrent neural networks
por: Hammer, Barbara
Publicado: (2000) -
Reinforcement Learning for Central Pattern Generation in Dynamical Recurrent Neural Networks
por: Yoder, Jason A., et al.
Publicado: (2022) -
Analysis of reflex modulation with a biologically realistic neural network
por: Stienen, Arno H. A., et al.
Publicado: (2007)