Cargando…
An efficient approach for the green synthesis of biologically active 2,3-dihydroquinazolin-4(1H)-ones using a magnetic EDTA coated copper based nanocomposite
2,3-Dihydroquinazolinone derivatives are known for antiviral, antimicrobial, analgesic, anti-inflammatory, and anticancer activities. However, recent approaches used for their synthesis suffer from various drawbacks. Therefore, we have fabricated a highly efficient magnetic EDTA-coated catalyst, Fe(...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832363/ https://www.ncbi.nlm.nih.gov/pubmed/36712626 http://dx.doi.org/10.1039/d2ra07496f |
_version_ | 1784868040005910528 |
---|---|
author | Kohli, Sahil Rathee, Garima Hooda, Sunita Chandra, Ramesh |
author_facet | Kohli, Sahil Rathee, Garima Hooda, Sunita Chandra, Ramesh |
author_sort | Kohli, Sahil |
collection | PubMed |
description | 2,3-Dihydroquinazolinone derivatives are known for antiviral, antimicrobial, analgesic, anti-inflammatory, and anticancer activities. However, recent approaches used for their synthesis suffer from various drawbacks. Therefore, we have fabricated a highly efficient magnetic EDTA-coated catalyst, Fe(3)O(4)@EDTA/CuI via a simple approach. The ethylenediamine tetraacetic acid (EDTA) plays a crucial role by strongly trapping the catalytic sites of CuI nanoparticles on the surface of the Fe(3)O(4) core. The designed nanocatalyst demonstrates its potential for the catalytic synthesis of 2,3-dihydroquinazolinones using 2-aminobenzamide with aldehydes as the reaction partners. The nanocatalyst was thoroughly characterized through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma analysis (ICP). The physiochemically characterized nanocatalyst was tested for synthesis of 2,3-dihydroquinazolinones and higher yields of derivatives were obtained with less time duration. Moreover, the catalytic synthesis is easy to operate without the use of any kind of additives/bases. Furthermore, the catalyst was magnetically recoverable after the completion of the reaction and displayed reusability for six successive rounds without any loss in its catalytic efficiency (confirmed by XRD, SEM, and TEM of the recycled material) along with very low leaching of copper (2.12 ppm) and iron (0.06 ppm) ions. Also, the green metrics were found in correlation with the ideal values (such as E factor (0.10), process mass intensity (1.10), carbon efficiency (96%) and reaction mass efficiency (90.62%)). |
format | Online Article Text |
id | pubmed-9832363 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-98323632023-01-26 An efficient approach for the green synthesis of biologically active 2,3-dihydroquinazolin-4(1H)-ones using a magnetic EDTA coated copper based nanocomposite Kohli, Sahil Rathee, Garima Hooda, Sunita Chandra, Ramesh RSC Adv Chemistry 2,3-Dihydroquinazolinone derivatives are known for antiviral, antimicrobial, analgesic, anti-inflammatory, and anticancer activities. However, recent approaches used for their synthesis suffer from various drawbacks. Therefore, we have fabricated a highly efficient magnetic EDTA-coated catalyst, Fe(3)O(4)@EDTA/CuI via a simple approach. The ethylenediamine tetraacetic acid (EDTA) plays a crucial role by strongly trapping the catalytic sites of CuI nanoparticles on the surface of the Fe(3)O(4) core. The designed nanocatalyst demonstrates its potential for the catalytic synthesis of 2,3-dihydroquinazolinones using 2-aminobenzamide with aldehydes as the reaction partners. The nanocatalyst was thoroughly characterized through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma analysis (ICP). The physiochemically characterized nanocatalyst was tested for synthesis of 2,3-dihydroquinazolinones and higher yields of derivatives were obtained with less time duration. Moreover, the catalytic synthesis is easy to operate without the use of any kind of additives/bases. Furthermore, the catalyst was magnetically recoverable after the completion of the reaction and displayed reusability for six successive rounds without any loss in its catalytic efficiency (confirmed by XRD, SEM, and TEM of the recycled material) along with very low leaching of copper (2.12 ppm) and iron (0.06 ppm) ions. Also, the green metrics were found in correlation with the ideal values (such as E factor (0.10), process mass intensity (1.10), carbon efficiency (96%) and reaction mass efficiency (90.62%)). The Royal Society of Chemistry 2023-01-11 /pmc/articles/PMC9832363/ /pubmed/36712626 http://dx.doi.org/10.1039/d2ra07496f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Kohli, Sahil Rathee, Garima Hooda, Sunita Chandra, Ramesh An efficient approach for the green synthesis of biologically active 2,3-dihydroquinazolin-4(1H)-ones using a magnetic EDTA coated copper based nanocomposite |
title | An efficient approach for the green synthesis of biologically active 2,3-dihydroquinazolin-4(1H)-ones using a magnetic EDTA coated copper based nanocomposite |
title_full | An efficient approach for the green synthesis of biologically active 2,3-dihydroquinazolin-4(1H)-ones using a magnetic EDTA coated copper based nanocomposite |
title_fullStr | An efficient approach for the green synthesis of biologically active 2,3-dihydroquinazolin-4(1H)-ones using a magnetic EDTA coated copper based nanocomposite |
title_full_unstemmed | An efficient approach for the green synthesis of biologically active 2,3-dihydroquinazolin-4(1H)-ones using a magnetic EDTA coated copper based nanocomposite |
title_short | An efficient approach for the green synthesis of biologically active 2,3-dihydroquinazolin-4(1H)-ones using a magnetic EDTA coated copper based nanocomposite |
title_sort | efficient approach for the green synthesis of biologically active 2,3-dihydroquinazolin-4(1h)-ones using a magnetic edta coated copper based nanocomposite |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832363/ https://www.ncbi.nlm.nih.gov/pubmed/36712626 http://dx.doi.org/10.1039/d2ra07496f |
work_keys_str_mv | AT kohlisahil anefficientapproachforthegreensynthesisofbiologicallyactive23dihydroquinazolin41honesusingamagneticedtacoatedcopperbasednanocomposite AT ratheegarima anefficientapproachforthegreensynthesisofbiologicallyactive23dihydroquinazolin41honesusingamagneticedtacoatedcopperbasednanocomposite AT hoodasunita anefficientapproachforthegreensynthesisofbiologicallyactive23dihydroquinazolin41honesusingamagneticedtacoatedcopperbasednanocomposite AT chandraramesh anefficientapproachforthegreensynthesisofbiologicallyactive23dihydroquinazolin41honesusingamagneticedtacoatedcopperbasednanocomposite AT kohlisahil efficientapproachforthegreensynthesisofbiologicallyactive23dihydroquinazolin41honesusingamagneticedtacoatedcopperbasednanocomposite AT ratheegarima efficientapproachforthegreensynthesisofbiologicallyactive23dihydroquinazolin41honesusingamagneticedtacoatedcopperbasednanocomposite AT hoodasunita efficientapproachforthegreensynthesisofbiologicallyactive23dihydroquinazolin41honesusingamagneticedtacoatedcopperbasednanocomposite AT chandraramesh efficientapproachforthegreensynthesisofbiologicallyactive23dihydroquinazolin41honesusingamagneticedtacoatedcopperbasednanocomposite |