Cargando…
Insights into the Supramolecular Structure and Degradation Mechanisms of Starch from Different Botanical Sources as Affected by Extrusion-based 3D Printing
[Image: see text] Extrusion-based 3D printing has emerged as the most versatile additive manufacturing technique for the printing of practically any material. However, 3D printing of functional materials often activates thermo-mechanical degradation, which affects the 3D shape quality. Herein, we de...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832475/ https://www.ncbi.nlm.nih.gov/pubmed/36458903 http://dx.doi.org/10.1021/acs.biomac.2c00881 |
_version_ | 1784868063704776704 |
---|---|
author | Shahbazi, Mahdiyar Jäger, Henry Ettelaie, Rammile Ulbrich, Marco |
author_facet | Shahbazi, Mahdiyar Jäger, Henry Ettelaie, Rammile Ulbrich, Marco |
author_sort | Shahbazi, Mahdiyar |
collection | PubMed |
description | [Image: see text] Extrusion-based 3D printing has emerged as the most versatile additive manufacturing technique for the printing of practically any material. However, 3D printing of functional materials often activates thermo-mechanical degradation, which affects the 3D shape quality. Herein, we describe the structural changes of eight different starch sources (normal or waxy) as a consequence of the temperature of an extrusion-based 3D printing system through in-depth characterization of their molecular and structural changes. The combination of size-exclusion chromatography, small-angle X-ray scattering, X-ray diffraction, dynamic viscoelasticity measurements, and in vitro digestion has offered an extensive picture of the structural and biological transformations of starch varieties. Depending on the 3D printing conditions, either gelatinization was attained (“moderate” condition) or single-amylose helix formation was induced (“extreme” condition). The stiff amylopectin crystallites in starch granules were more susceptible to thermo-mechanical degradation compared to flexible amorphous amylose. The crystalline morphology of the starch varieties varied from B-type crystallinity for the starch 3D printing at the “moderate” condition to a mixture of C- and V-type crystallinity regarding the “extreme” condition. The “extreme” condition reduced the viscoelasticity of 3D-printed starches but increased the starch digestibility rate/extent. In contrast, the “moderate” condition increased the viscoelastic moduli, decreasing the starch digestion rate/extent. This was more considerable mainly regarding the waxy starch varieties. Finally, normal starch varieties presented a well-defined shape fidelity, being able to form a stable structure, whereas waxy starches exhibited a non-well-defined structure and were not able to maintain their integrity after printing. The results of this research allow us to monitor the degradability of a variety of starch cultivars to create starch-based 3D structures, in which the local structure can be controlled based on the 3D printing parameters. |
format | Online Article Text |
id | pubmed-9832475 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-98324752023-01-12 Insights into the Supramolecular Structure and Degradation Mechanisms of Starch from Different Botanical Sources as Affected by Extrusion-based 3D Printing Shahbazi, Mahdiyar Jäger, Henry Ettelaie, Rammile Ulbrich, Marco Biomacromolecules [Image: see text] Extrusion-based 3D printing has emerged as the most versatile additive manufacturing technique for the printing of practically any material. However, 3D printing of functional materials often activates thermo-mechanical degradation, which affects the 3D shape quality. Herein, we describe the structural changes of eight different starch sources (normal or waxy) as a consequence of the temperature of an extrusion-based 3D printing system through in-depth characterization of their molecular and structural changes. The combination of size-exclusion chromatography, small-angle X-ray scattering, X-ray diffraction, dynamic viscoelasticity measurements, and in vitro digestion has offered an extensive picture of the structural and biological transformations of starch varieties. Depending on the 3D printing conditions, either gelatinization was attained (“moderate” condition) or single-amylose helix formation was induced (“extreme” condition). The stiff amylopectin crystallites in starch granules were more susceptible to thermo-mechanical degradation compared to flexible amorphous amylose. The crystalline morphology of the starch varieties varied from B-type crystallinity for the starch 3D printing at the “moderate” condition to a mixture of C- and V-type crystallinity regarding the “extreme” condition. The “extreme” condition reduced the viscoelasticity of 3D-printed starches but increased the starch digestibility rate/extent. In contrast, the “moderate” condition increased the viscoelastic moduli, decreasing the starch digestion rate/extent. This was more considerable mainly regarding the waxy starch varieties. Finally, normal starch varieties presented a well-defined shape fidelity, being able to form a stable structure, whereas waxy starches exhibited a non-well-defined structure and were not able to maintain their integrity after printing. The results of this research allow us to monitor the degradability of a variety of starch cultivars to create starch-based 3D structures, in which the local structure can be controlled based on the 3D printing parameters. American Chemical Society 2022-12-02 2023-01-09 /pmc/articles/PMC9832475/ /pubmed/36458903 http://dx.doi.org/10.1021/acs.biomac.2c00881 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Shahbazi, Mahdiyar Jäger, Henry Ettelaie, Rammile Ulbrich, Marco Insights into the Supramolecular Structure and Degradation Mechanisms of Starch from Different Botanical Sources as Affected by Extrusion-based 3D Printing |
title | Insights into
the Supramolecular Structure and Degradation
Mechanisms of Starch from Different Botanical Sources as Affected
by Extrusion-based 3D Printing |
title_full | Insights into
the Supramolecular Structure and Degradation
Mechanisms of Starch from Different Botanical Sources as Affected
by Extrusion-based 3D Printing |
title_fullStr | Insights into
the Supramolecular Structure and Degradation
Mechanisms of Starch from Different Botanical Sources as Affected
by Extrusion-based 3D Printing |
title_full_unstemmed | Insights into
the Supramolecular Structure and Degradation
Mechanisms of Starch from Different Botanical Sources as Affected
by Extrusion-based 3D Printing |
title_short | Insights into
the Supramolecular Structure and Degradation
Mechanisms of Starch from Different Botanical Sources as Affected
by Extrusion-based 3D Printing |
title_sort | insights into
the supramolecular structure and degradation
mechanisms of starch from different botanical sources as affected
by extrusion-based 3d printing |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832475/ https://www.ncbi.nlm.nih.gov/pubmed/36458903 http://dx.doi.org/10.1021/acs.biomac.2c00881 |
work_keys_str_mv | AT shahbazimahdiyar insightsintothesupramolecularstructureanddegradationmechanismsofstarchfromdifferentbotanicalsourcesasaffectedbyextrusionbased3dprinting AT jagerhenry insightsintothesupramolecularstructureanddegradationmechanismsofstarchfromdifferentbotanicalsourcesasaffectedbyextrusionbased3dprinting AT ettelaierammile insightsintothesupramolecularstructureanddegradationmechanismsofstarchfromdifferentbotanicalsourcesasaffectedbyextrusionbased3dprinting AT ulbrichmarco insightsintothesupramolecularstructureanddegradationmechanismsofstarchfromdifferentbotanicalsourcesasaffectedbyextrusionbased3dprinting |