Cargando…
Cardioprotective effect of crude polysaccharide fermented by Trametes Sanguinea Lyoyd on doxorubicin-induced myocardial injury mice
Doxorubicin (DOX) is a broad-spectrum anti-tumor drug, but its clinical application is greatly limited because of the cardiotoxicity. Thus, exploration of effective therapies against DOX-induced cardiotoxicity is necessary. The aim of this study is to investigate the effects and possible mechanisms...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832647/ https://www.ncbi.nlm.nih.gov/pubmed/36627724 http://dx.doi.org/10.1186/s40360-022-00641-y |
Sumario: | Doxorubicin (DOX) is a broad-spectrum anti-tumor drug, but its clinical application is greatly limited because of the cardiotoxicity. Thus, exploration of effective therapies against DOX-induced cardiotoxicity is necessary. The aim of this study is to investigate the effects and possible mechanisms of Trametes Sanguinea Lyoyd fermented crude polysaccharide (TSLFACP) against DOX-induced cardiotoxicity. We investigated the protective effects of TSLFACP on myocardial injury and its possible mechanisms using two in vitro cells of DOX-treated cardiomyocytes H9C2 and embryonic myocardial cell line CCC-HEH-2 and a in vivo mouse model of DOX-induced myocardial injury. We found that TSLFACP could reverse DOX-induced toxicity in H9C2 and CCC-HEH-2 cells. Similarly, we found that when pretreatment with TSLFACP (200 mg/kg, i.g.) daily for 6 days, DOX-induced myocardial damage was attenuated, including the decrease in serum myocardial injury index, and the amelioration in cardiac histopathological morphology. Additionally, immunohistochemistry and western blotting were used to identify the underlying and possible signal pathways. We found that TSLFACP attenuated the expression of LC3-II, Beclin-1 and PRAP induced by DOX. In conclusion, our results demonstrated that TSLFACP could protect against DOX-induced cardiotoxicity by inhibiting autophagy and apoptosis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40360-022-00641-y. |
---|