Cargando…
Bevacizumab suppressed degenerative changes in articular cartilage explants from patients with osteoarthritis of the knee
BACKGROUND: This study was designed to test the hypothesis that blockade of vascular endothelial growth factor (VEGF) suppresses degenerative changes in articular cartilage from patients with osteoarthritis (OA). METHODS: Articular cartilage from eight OA patients was subjected to explant culture fo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832671/ https://www.ncbi.nlm.nih.gov/pubmed/36627659 http://dx.doi.org/10.1186/s13018-023-03512-2 |
Sumario: | BACKGROUND: This study was designed to test the hypothesis that blockade of vascular endothelial growth factor (VEGF) suppresses degenerative changes in articular cartilage from patients with osteoarthritis (OA). METHODS: Articular cartilage from eight OA patients was subjected to explant culture for 2 days in the presence or absence of 10 ng/ml recombinant interleukin (IL)-1β. The blocking effect of VEGF was examined by the addition of 10 or 100 ng/ml of bevacizumab. The culture media were harvested, and markers for cartilage degradation were measured by sandwich enzyme-linked immunoassay. Total RNA was isolated from cartilage tissues, and gene expressions associated with the anabolic response were examined by the quantitative real-time polymerase chain reaction. RESULTS: Bevacizumab significantly reduced concentrations of matrix metalloproteinase (MMP)-2, MMP-3, and cartilage oligomeric matrix protein in the culture media with and without IL-1β. Significant suppressive effects of bevacizumab on MMP-9 and MMP-13 were shown only in the presence of IL-1β. Gene expression of Col2a1 was significantly increased by the addition of bevacizumab in the absence of IL-1β. CONCLUSION: Bevacizumab inhibits catabolic reactions and stimulates anabolic function in articular cartilage derived from OA patients directly, suggesting a protective effect on articular cartilage from OA progression. |
---|