Cargando…
Elevated neurofilament light chain CSF/serum ratio indicates impaired CSF outflow in idiopathic intracranial hypertension
BACKGROUND: Impaired cerebrospinal fluid (CSF) homeostasis is central to the pathogenesis of idiopathic intracranial hypertension (IIH), although the precise mechanisms involved are still not completely understood. The aim of the current study was to assess the CSF/serum ratio of neurofilament light...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832777/ https://www.ncbi.nlm.nih.gov/pubmed/36631830 http://dx.doi.org/10.1186/s12987-022-00403-2 |
Sumario: | BACKGROUND: Impaired cerebrospinal fluid (CSF) homeostasis is central to the pathogenesis of idiopathic intracranial hypertension (IIH), although the precise mechanisms involved are still not completely understood. The aim of the current study was to assess the CSF/serum ratio of neurofilament light chain levels (QNfL) as a potential indicator of functional CSF outflow obstruction in IIH patients. METHODS: NfL levels were measured by single molecule array in CSF and serum samples of 87 IIH patients and in three control groups, consisting of 52 multiple sclerosis (MS) patients with an acute relapse, 21 patients with an axonal polyneuropathy (PNP), and 41 neurologically healthy controls (HC). QNfL was calculated as the ratio of CSF and serum NfL levels. Similarly, we also assessed the CSF/serum ratio of glial fibrillary acidic protein (QGFAP) levels to validate the QNfL data. Routine CSF parameters including the CSF/serum albumin ratio (QAlb) were determined in all groups. Lumbar puncture opening pressure of IIH patients was measured by manometry. RESULTS: CSF-NfL levels (r = 0.29, p = 0.008) and QNfL (0.40, p = 0.0009), but not serum NfL (S-NfL) levels, were associated with lumbar puncture opening pressure in IIH patients. CSF-NfL levels were increased in IIH patients, MS patients, and PNP patients, whereas sNfL levels were normal in IIH, but elevated in MS and PNP. Remarkably, QNfL (p < 0.0001) as well as QGFAP (p < 0.01) were only increased in IIH patients. QNfL was positively correlated with CSF-NfL levels (r = 0.51, p = 0.0012) and negatively correlated with S-NfL levels (r = − 0.51, p = 0.0012) in HC, while it was only positively associated with CSF-NfL levels in IIH patients (r = 0.71, p < 0.0001). An increase in blood-CSF barrier permeability assessed by QAlb did not lead to a decrease in QNfL in any cohort. CONCLUSIONS: The observed elevation of QNfL in IIH patients, which was associated with lumbar puncture opening pressure, indicates a reduced NfL transition from the CSF to serum compartment. This supports the hypothesis of a pressure-dependent CSF outflow obstruction to be critically involved in IIH pathogenesis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12987-022-00403-2. |
---|