Cargando…
Learning from small medical data—robust semi-supervised cancer prognosis classifier with Bayesian variational autoencoder
MOTIVATION: Cancer is one of the world’s leading mortality causes, and its prognosis is hard to predict due to complicated biological interactions among heterogeneous data types. Numerous challenges, such as censorship, high dimensionality and small sample size, prevent researchers from using deep l...
Autores principales: | Hsu, Te-Cheng, Lin, Che |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832968/ https://www.ncbi.nlm.nih.gov/pubmed/36698767 http://dx.doi.org/10.1093/bioadv/vbac100 |
Ejemplares similares
-
Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis
por: da Rosa, Tiago Gaspar, et al.
Publicado: (2022) -
Semi-Supervised Learning for Defect Segmentation with Autoencoder Auxiliary Module
por: Sae-ang, Bee-ing, et al.
Publicado: (2022) -
Improved semi-supervised autoencoder for deception detection
por: Fu, Hongliang, et al.
Publicado: (2019) -
Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders
por: Whiteway, Matthew R., et al.
Publicado: (2021) -
Adversarial Autoencoder and Multi-Task Semi-Supervised Learning for Multi-stage Process
por: Mendes, Andre, et al.
Publicado: (2020)