Cargando…
Impact of different magnetic materials added to silver–magnetite nanoparticles on the structural, magnetic and antimicrobial properties
Different magnetic materials of spinel copper and cobalt nanoferrites added to silver–magnetite nanoparticles were fabricated by a facile, low cost, and rapid auto-combustion method to form a nanocomposite. X-ray diffraction patterns and atomic force microscopy were studied for the investigated samp...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833031/ https://www.ncbi.nlm.nih.gov/pubmed/36647372 http://dx.doi.org/10.1140/epjs/s11734-022-00759-4 |
Sumario: | Different magnetic materials of spinel copper and cobalt nanoferrites added to silver–magnetite nanoparticles were fabricated by a facile, low cost, and rapid auto-combustion method to form a nanocomposite. X-ray diffraction patterns and atomic force microscopy were studied for the investigated samples and confirmed their nanosize range. Adding cobalt nanoferrite to silver–magnetite (CoAF) yielded a more pronounced effect in the magnetic measurements than adding copper nanoferrite (CuAF). This result was attributed to the much higher coercivity H(c) and saturation magnetization M(s) (5.7-fold and 2.8-fold, respectively) of CoAF than CuAF; accordingly, the CoAF nanocomposite can be applied to a permanent magnet. Next, the operating frequencies of the nanocomposites were calculated from the magnetic measurements. The CoAF and CuAF nanocomposites were applicable in the microwave super-high-frequency C-band and the microwave super-high-frequency S-band, respectively. Both nanocomposites were ineffective against the tested fungi but showed strong antimicrobial activities against the tested Gram-positive and Gram-negative bacteria. Thus, CoAF and CuAF nanocomposites are potential antibacterial nanomaterials for biomedical applications. |
---|