Cargando…
Information maximization explains state-dependent synaptic plasticity and memory reorganization during non-rapid eye movement sleep
Slow waves during the non-rapid eye movement (NREM) sleep reflect the alternating up and down states of cortical neurons; global and local slow waves promote memory consolidation and forgetting, respectively. Furthermore, distinct spike-timing-dependent plasticity (STDP) operates in these up and dow...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833047/ https://www.ncbi.nlm.nih.gov/pubmed/36712943 http://dx.doi.org/10.1093/pnasnexus/pgac286 |
_version_ | 1784868176791601152 |
---|---|
author | Yoshida, Kensuke Toyoizumi, Taro |
author_facet | Yoshida, Kensuke Toyoizumi, Taro |
author_sort | Yoshida, Kensuke |
collection | PubMed |
description | Slow waves during the non-rapid eye movement (NREM) sleep reflect the alternating up and down states of cortical neurons; global and local slow waves promote memory consolidation and forgetting, respectively. Furthermore, distinct spike-timing-dependent plasticity (STDP) operates in these up and down states. The contribution of different plasticity rules to neural information coding and memory reorganization remains unknown. Here, we show that optimal synaptic plasticity for information maximization in a cortical neuron model provides a unified explanation for these phenomena. The model indicates that the optimal synaptic plasticity is biased toward depression as the baseline firing rate increases. This property explains the distinct STDP observed in the up and down states. Furthermore, it explains how global and local slow waves predominantly potentiate and depress synapses, respectively, if the background firing rate of excitatory neurons declines with the spatial scale of waves as the model predicts. The model provides a unifying account of the role of NREM sleep, bridging neural information coding, synaptic plasticity, and memory reorganization. |
format | Online Article Text |
id | pubmed-9833047 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-98330472023-01-26 Information maximization explains state-dependent synaptic plasticity and memory reorganization during non-rapid eye movement sleep Yoshida, Kensuke Toyoizumi, Taro PNAS Nexus Research Report Slow waves during the non-rapid eye movement (NREM) sleep reflect the alternating up and down states of cortical neurons; global and local slow waves promote memory consolidation and forgetting, respectively. Furthermore, distinct spike-timing-dependent plasticity (STDP) operates in these up and down states. The contribution of different plasticity rules to neural information coding and memory reorganization remains unknown. Here, we show that optimal synaptic plasticity for information maximization in a cortical neuron model provides a unified explanation for these phenomena. The model indicates that the optimal synaptic plasticity is biased toward depression as the baseline firing rate increases. This property explains the distinct STDP observed in the up and down states. Furthermore, it explains how global and local slow waves predominantly potentiate and depress synapses, respectively, if the background firing rate of excitatory neurons declines with the spatial scale of waves as the model predicts. The model provides a unifying account of the role of NREM sleep, bridging neural information coding, synaptic plasticity, and memory reorganization. Oxford University Press 2022-12-10 /pmc/articles/PMC9833047/ /pubmed/36712943 http://dx.doi.org/10.1093/pnasnexus/pgac286 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of National Academy of Sciences. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Report Yoshida, Kensuke Toyoizumi, Taro Information maximization explains state-dependent synaptic plasticity and memory reorganization during non-rapid eye movement sleep |
title | Information maximization explains state-dependent synaptic plasticity and memory reorganization during non-rapid eye movement sleep |
title_full | Information maximization explains state-dependent synaptic plasticity and memory reorganization during non-rapid eye movement sleep |
title_fullStr | Information maximization explains state-dependent synaptic plasticity and memory reorganization during non-rapid eye movement sleep |
title_full_unstemmed | Information maximization explains state-dependent synaptic plasticity and memory reorganization during non-rapid eye movement sleep |
title_short | Information maximization explains state-dependent synaptic plasticity and memory reorganization during non-rapid eye movement sleep |
title_sort | information maximization explains state-dependent synaptic plasticity and memory reorganization during non-rapid eye movement sleep |
topic | Research Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833047/ https://www.ncbi.nlm.nih.gov/pubmed/36712943 http://dx.doi.org/10.1093/pnasnexus/pgac286 |
work_keys_str_mv | AT yoshidakensuke informationmaximizationexplainsstatedependentsynapticplasticityandmemoryreorganizationduringnonrapideyemovementsleep AT toyoizumitaro informationmaximizationexplainsstatedependentsynapticplasticityandmemoryreorganizationduringnonrapideyemovementsleep |