Cargando…
Behind the developing brains and beating hearts of stem cell-derived embryo models
Studies over the past decade have shown how stem cells representing embryonic and extra-embryonic tissues of the mouse can self-assemble in the culture dish to recapitulate an astonishing part of early embryonic development. A systematic analysis has demonstrated how pluripotent embryonic stem cells...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833437/ https://www.ncbi.nlm.nih.gov/pubmed/36630196 http://dx.doi.org/10.1098/rsob.220325 |
Sumario: | Studies over the past decade have shown how stem cells representing embryonic and extra-embryonic tissues of the mouse can self-assemble in the culture dish to recapitulate an astonishing part of early embryonic development. A systematic analysis has demonstrated how pluripotent embryonic stem cells can be induced to behave like the implanting epiblast; how they can interact with trophectoderm stem cells to form a patterned structure resembling the implanting embryo prior to gastrulation; and how the third stem cell type—extra-embryonic endoderm cells—can be incorporated to generate structures that undergo the cell movements and gene expression patterns of gastrulation. Moreover, such stem cell-derived embryo models can proceed to neurulation and establish progenitors for all parts of the brain and neural tube, somites, beating heart structures and gut tube. They develop within extra-embryonic yolk sacs that initiate haematopoiesis. Here we trace this journey of discovery. |
---|