Cargando…

Mesoscale convective clustering enhances tropical precipitation

In the tropics, extreme precipitation events are often caused by mesoscale systems of organized, spatially clustered deep cumulonimbi, posing a substantial risk to life and property. While the clustering of convective clouds has been thought to strengthen precipitation rate, no quantitative estimate...

Descripción completa

Detalles Bibliográficos
Autores principales: Angulo-Umana, Pedro, Kim, Daehyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833657/
https://www.ncbi.nlm.nih.gov/pubmed/36630505
http://dx.doi.org/10.1126/sciadv.abo5317
Descripción
Sumario:In the tropics, extreme precipitation events are often caused by mesoscale systems of organized, spatially clustered deep cumulonimbi, posing a substantial risk to life and property. While the clustering of convective clouds has been thought to strengthen precipitation rate, no quantitative estimates of this hypothesized enhancement exist. In this study, after isolating the effects of mesoscale convective clustering on precipitation, we find that strongly clustered oceanic convection precipitates more intensely than weakly clustered convection. We further show that this enhancement is primarily attributable to an increase in convective precipitation rate when the environment is less than 70% saturated, with increases in the size of the rainy stratiform region being of equal or greater importance when the environment is closer to saturation. Our results suggest that a correct representation of mesoscale organized convective systems in numerical weather and climate models is needed for accurate predictions of extreme precipitation events.