Cargando…
Accurate global machine learning force fields for molecules with hundreds of atoms
Global machine learning force fields, with the capacity to capture collective interactions in molecular systems, now scale up to a few dozen atoms due to considerable growth of model complexity with system size. For larger molecules, locality assumptions are introduced, with the consequence that non...
Autores principales: | Chmiela, Stefan, Vassilev-Galindo, Valentin, Unke, Oliver T., Kabylda, Adil, Sauceda, Huziel E., Tkatchenko, Alexandre, Müller, Klaus-Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833674/ https://www.ncbi.nlm.nih.gov/pubmed/36630510 http://dx.doi.org/10.1126/sciadv.adf0873 |
Ejemplares similares
-
Efficient interatomic descriptors for accurate machine learning force fields of extended molecules
por: Kabylda, Adil, et al.
Publicado: (2023) -
Author Correction: Efficient interatomic descriptors for accurate machine learning force fields of extended molecules
por: Kabylda, Adil, et al.
Publicado: (2023) -
Machine Learning Force Fields
por: Unke, Oliver T., et al.
Publicado: (2021) -
Machine learning of accurate energy-conserving molecular force fields
por: Chmiela, Stefan, et al.
Publicado: (2017) -
Dynamical strengthening of covalent and non-covalent molecular interactions by nuclear quantum effects at finite temperature
por: Sauceda, Huziel E., et al.
Publicado: (2021)