Cargando…

Proteome-wide systems genetics identifies UFMylation as a regulator of skeletal muscle function

Improving muscle function has great potential to improve the quality of life. To identify novel regulators of skeletal muscle metabolism and function, we performed a proteomic analysis of gastrocnemius muscle from 73 genetically distinct inbred mouse strains, and integrated the data with previously...

Descripción completa

Detalles Bibliográficos
Autores principales: Molendijk, Jeffrey, Blazev, Ronnie, Mills, Richard J, Ng, Yaan-Kit, Watt, Kevin I, Chau, Daryn, Gregorevic, Paul, Crouch, Peter J, Hilton, James BW, Lisowski, Leszek, Zhang, Peixiang, Reue, Karen, Lusis, Aldons J, Hudson, James E, James, David E, Seldin, Marcus M, Parker, Benjamin L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833826/
https://www.ncbi.nlm.nih.gov/pubmed/36472367
http://dx.doi.org/10.7554/eLife.82951
_version_ 1784868324942807040
author Molendijk, Jeffrey
Blazev, Ronnie
Mills, Richard J
Ng, Yaan-Kit
Watt, Kevin I
Chau, Daryn
Gregorevic, Paul
Crouch, Peter J
Hilton, James BW
Lisowski, Leszek
Zhang, Peixiang
Reue, Karen
Lusis, Aldons J
Hudson, James E
James, David E
Seldin, Marcus M
Parker, Benjamin L
author_facet Molendijk, Jeffrey
Blazev, Ronnie
Mills, Richard J
Ng, Yaan-Kit
Watt, Kevin I
Chau, Daryn
Gregorevic, Paul
Crouch, Peter J
Hilton, James BW
Lisowski, Leszek
Zhang, Peixiang
Reue, Karen
Lusis, Aldons J
Hudson, James E
James, David E
Seldin, Marcus M
Parker, Benjamin L
author_sort Molendijk, Jeffrey
collection PubMed
description Improving muscle function has great potential to improve the quality of life. To identify novel regulators of skeletal muscle metabolism and function, we performed a proteomic analysis of gastrocnemius muscle from 73 genetically distinct inbred mouse strains, and integrated the data with previously acquired genomics and >300 molecular/phenotypic traits via quantitative trait loci mapping and correlation network analysis. These data identified thousands of associations between protein abundance and phenotypes and can be accessed online (https://muscle.coffeeprot.com/) to identify regulators of muscle function. We used this resource to prioritize targets for a functional genomic screen in human bioengineered skeletal muscle. This identified several negative regulators of muscle function including UFC1, an E2 ligase for protein UFMylation. We show UFMylation is up-regulated in a mouse model of amyotrophic lateral sclerosis, a disease that involves muscle atrophy. Furthermore, in vivo knockdown of UFMylation increased contraction force, implicating its role as a negative regulator of skeletal muscle function.
format Online
Article
Text
id pubmed-9833826
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-98338262023-01-12 Proteome-wide systems genetics identifies UFMylation as a regulator of skeletal muscle function Molendijk, Jeffrey Blazev, Ronnie Mills, Richard J Ng, Yaan-Kit Watt, Kevin I Chau, Daryn Gregorevic, Paul Crouch, Peter J Hilton, James BW Lisowski, Leszek Zhang, Peixiang Reue, Karen Lusis, Aldons J Hudson, James E James, David E Seldin, Marcus M Parker, Benjamin L eLife Computational and Systems Biology Improving muscle function has great potential to improve the quality of life. To identify novel regulators of skeletal muscle metabolism and function, we performed a proteomic analysis of gastrocnemius muscle from 73 genetically distinct inbred mouse strains, and integrated the data with previously acquired genomics and >300 molecular/phenotypic traits via quantitative trait loci mapping and correlation network analysis. These data identified thousands of associations between protein abundance and phenotypes and can be accessed online (https://muscle.coffeeprot.com/) to identify regulators of muscle function. We used this resource to prioritize targets for a functional genomic screen in human bioengineered skeletal muscle. This identified several negative regulators of muscle function including UFC1, an E2 ligase for protein UFMylation. We show UFMylation is up-regulated in a mouse model of amyotrophic lateral sclerosis, a disease that involves muscle atrophy. Furthermore, in vivo knockdown of UFMylation increased contraction force, implicating its role as a negative regulator of skeletal muscle function. eLife Sciences Publications, Ltd 2022-12-06 /pmc/articles/PMC9833826/ /pubmed/36472367 http://dx.doi.org/10.7554/eLife.82951 Text en © 2022, Molendijk et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Computational and Systems Biology
Molendijk, Jeffrey
Blazev, Ronnie
Mills, Richard J
Ng, Yaan-Kit
Watt, Kevin I
Chau, Daryn
Gregorevic, Paul
Crouch, Peter J
Hilton, James BW
Lisowski, Leszek
Zhang, Peixiang
Reue, Karen
Lusis, Aldons J
Hudson, James E
James, David E
Seldin, Marcus M
Parker, Benjamin L
Proteome-wide systems genetics identifies UFMylation as a regulator of skeletal muscle function
title Proteome-wide systems genetics identifies UFMylation as a regulator of skeletal muscle function
title_full Proteome-wide systems genetics identifies UFMylation as a regulator of skeletal muscle function
title_fullStr Proteome-wide systems genetics identifies UFMylation as a regulator of skeletal muscle function
title_full_unstemmed Proteome-wide systems genetics identifies UFMylation as a regulator of skeletal muscle function
title_short Proteome-wide systems genetics identifies UFMylation as a regulator of skeletal muscle function
title_sort proteome-wide systems genetics identifies ufmylation as a regulator of skeletal muscle function
topic Computational and Systems Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833826/
https://www.ncbi.nlm.nih.gov/pubmed/36472367
http://dx.doi.org/10.7554/eLife.82951
work_keys_str_mv AT molendijkjeffrey proteomewidesystemsgeneticsidentifiesufmylationasaregulatorofskeletalmusclefunction
AT blazevronnie proteomewidesystemsgeneticsidentifiesufmylationasaregulatorofskeletalmusclefunction
AT millsrichardj proteomewidesystemsgeneticsidentifiesufmylationasaregulatorofskeletalmusclefunction
AT ngyaankit proteomewidesystemsgeneticsidentifiesufmylationasaregulatorofskeletalmusclefunction
AT wattkevini proteomewidesystemsgeneticsidentifiesufmylationasaregulatorofskeletalmusclefunction
AT chaudaryn proteomewidesystemsgeneticsidentifiesufmylationasaregulatorofskeletalmusclefunction
AT gregorevicpaul proteomewidesystemsgeneticsidentifiesufmylationasaregulatorofskeletalmusclefunction
AT crouchpeterj proteomewidesystemsgeneticsidentifiesufmylationasaregulatorofskeletalmusclefunction
AT hiltonjamesbw proteomewidesystemsgeneticsidentifiesufmylationasaregulatorofskeletalmusclefunction
AT lisowskileszek proteomewidesystemsgeneticsidentifiesufmylationasaregulatorofskeletalmusclefunction
AT zhangpeixiang proteomewidesystemsgeneticsidentifiesufmylationasaregulatorofskeletalmusclefunction
AT reuekaren proteomewidesystemsgeneticsidentifiesufmylationasaregulatorofskeletalmusclefunction
AT lusisaldonsj proteomewidesystemsgeneticsidentifiesufmylationasaregulatorofskeletalmusclefunction
AT hudsonjamese proteomewidesystemsgeneticsidentifiesufmylationasaregulatorofskeletalmusclefunction
AT jamesdavide proteomewidesystemsgeneticsidentifiesufmylationasaregulatorofskeletalmusclefunction
AT seldinmarcusm proteomewidesystemsgeneticsidentifiesufmylationasaregulatorofskeletalmusclefunction
AT parkerbenjaminl proteomewidesystemsgeneticsidentifiesufmylationasaregulatorofskeletalmusclefunction